An inequality for generalized quadrangles
HTML articles powered by AMS MathViewer
- by Stanley E. Payne PDF
- Proc. Amer. Math. Soc. 71 (1978), 147-152 Request permission
Abstract:
Let $\mathcal {S}$ be a generalized quadrangle of order (s, t). Let X and Y be disjoint sets of pairwise noncollinear points of $\mathcal {S}$ such that each point of X is collinear with each point of Y. If $m = |X|$ and $n = |Y|$, then $(m - 1)(n - 1) \leqslant {s^2}$ . When equality holds, severe restrictions are placed on m, n, s, and t.References
- R. C. Bose and S. S. Shrikhande, Geometric and pseudo-geometric graphs $(q^{2}+1,\,q+1,\,1)$, J. Geom. 2 (1972), 75–94. MR 302468, DOI 10.1007/BF02148139
- Peter J. Cameron, Partial quadrangles, Quart. J. Math. Oxford Ser. (2) 26 (1975), 61–73. MR 366702, DOI 10.1093/qmath/26.1.61
- D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Univ. Perugia, Perugia, 1970) Ist. Mat., Univ. Perugia, Perugia, 1971, pp. 263–293. MR 0366698
- D. G. Higman, Invariant relations, coherent configurations and generalized polygons, Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974) Math. Centre Tracts, No. 57, Math. Centrum, Amsterdam, 1974, pp. 27–43. MR 0379244
- Stanley E. Payne, Finite generalized quadrangles: a survey, Proceedings of the International Conference on Projective Planes (Washington State Univ., Pullman, Wash., 1973) Washington State Univ. Press, Pullman, Wash., 1973, pp. 219–261. MR 0363954
- J. A. Thas, A remark concerning the restriction on the parameters of a $4$-gonal subconfiguration, Simon Stevin 48 (1974/75), no. III-IV, 65–68. MR 480103
- J. A. Thas, On generalized quadrangles with parameters $s=q^{2}$ and $t=q^{3}$, Geometriae Dedicata 5 (1976), no. 4, 485–496. MR 467515, DOI 10.1007/BF00150779
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 147-152
- MSC: Primary 05B25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476547-7
- MathSciNet review: 0476547