A refinement of the arithmetic mean-geometric mean inequality
HTML articles powered by AMS MathViewer
- by D. I. Cartwright and M. J. Field PDF
- Proc. Amer. Math. Soc. 71 (1978), 36-38 Request permission
Abstract:
Upper and lower bounds are given for the difference between the arithmetic and geometric means of n positive real numbers in terms of the variance of these numbers.References
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- A. M. Fink and Max Jodeit Jr., A generalization of the arithmetic-geometric means inequality, Proc. Amer. Math. Soc. 61 (1976), no. 2, 255–261 (1977). MR 427564, DOI 10.1090/S0002-9939-1976-0427564-2
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- S. H. Tung, On lower and upper bounds of the difference between the arithmetic and the geometric mean, Math. Comp. 29 (1975), 834–836. MR 393393, DOI 10.1090/S0025-5718-1975-0393393-9 K. S. Williams, Problem 247, Eureka 3 (1977), 131.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 36-38
- MSC: Primary 26A87
- DOI: https://doi.org/10.1090/S0002-9939-1978-0476971-2
- MathSciNet review: 0476971