## A general result regarding the growth of solutions of first-order differential equations

HTML articles powered by AMS MathViewer

- by Steven B. Bank
- Proc. Amer. Math. Soc.
**71**(1978), 39-45 - DOI: https://doi.org/10.1090/S0002-9939-1978-0481246-1
- PDF | Request permission

## Abstract:

In this paper, we treat first-order algebraic differential equations whose coefficients are arbitrary complex-valued functions on an interval $[{x_0}, + \infty )$, and we obtain an estimate on the growth of all real-valued solutions on $[{x_0}, + \infty )$. Our result includes, as a very special case, the well-known result of Lindelöf for polynomial coefficients.## References

- Steven B. Bank,
*Some results on analytic and meromorphic solutions of algebraic differential equations*, Advances in Math.**15**(1975), 41–62. MR**379940**, DOI 10.1016/0001-8708(75)90124-3 - Richard Bellman,
*Stability theory of differential equations*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR**0061235** - K. L. Cooke,
*The rate of increase of real continuous solutions of algebraic differential-difference equations of the first order*, Pacific J. Math.**4**(1954), 483–501. MR**65008** - K. L. Cooke,
*The rate of increase of real continuous solutions of certain algebraic functional equations*, Trans. Amer. Math. Soc.**92**(1959), 106–124. MR**107765**, DOI 10.1090/S0002-9947-1959-0107765-8 - Otis E. Lancaster,
*Some results concerning the behavior at infinity of real continuous solutions of algebraic difference equations*, Bull. Amer. Math. Soc.**46**(1940), 169–177. MR**1108**, DOI 10.1090/S0002-9904-1940-07164-2 - E. Lindelöf,
*Sur la croissance des intégrales des équations différentielles algébriques du premier ordre*, Bull. Soc. Math. France**27**(1899), 205–215 (French). MR**1504345** - S. M. Shah,
*On real continuous solutions of algebraic difference equations*, Bull. Amer. Math. Soc.**53**(1947), 548–558. MR**22299**, DOI 10.1090/S0002-9904-1947-08830-3 - S. M. Shah,
*On real continuous solutions of algebraic difference equations. II*, Proc. Nat. Inst. Sci. India**16**(1950), 11–17. MR**36422**
T. Vijayaraghavan,

*Sur la croissance des fonctions définies par les équations différentielles*, C. R. Acad. Sci. Paris

**194**(1932), 827-829. T. Vijayaraghavan, N. Basu and S. Bose,

*A simple example for a theorem of Vijayaraghavan*, J. London Math. Soc.

**12**(1937), 250-252.

## Bibliographic Information

- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**71**(1978), 39-45 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481246-1
- MathSciNet review: 0481246