A characterization of M. W. Wilson’s criterion for nonnegative expansions of orthogonal polynomials
HTML articles powered by AMS MathViewer
- by Charles A. Micchelli PDF
- Proc. Amer. Math. Soc. 71 (1978), 69-72 Request permission
Abstract:
Given a nonnegative function $f(x)$, M. W. Wilson observed that if \begin{equation}\int _0^\infty f(x) Q_i(x) Q_j(x)d\mu (x) \leqslant 0,\quad i \ne j, \quad \tag {$1$}\end{equation} then the polynomials ${P_n}(x),{P_n}(0) = 1$, orthogonal relative to $f(x)d\mu (x)$, have an expansion \[ {P_n}(x) = \sum \limits _{k = 0}^n {{a_{kn}}{Q_k}(x)} \] with nonnegative coefficients ${a_{kn}} \geqslant 0$ where ${Q_n}(x),{Q_n}(0) = 1$, are orthogonal relative to $d\mu (x)$. Recently it was shown that (1) holds for $f(x) = {x^c},0 < c < 1$. In this paper we characterize those functions $f(x)$ for which (1) is valid for all positive measures $d\mu (x)$.References
- Richard Askey, Orthogonal expansions with positive coefficients, Proc. Amer. Math. Soc. 16 (1965), 1191–1194. MR 185331, DOI 10.1090/S0002-9939-1965-0185331-4
- Charles A. Micchelli and R. A. Willoughby, On functions which preserve the class of Stieltjes matrices, Linear Algebra Appl. 23 (1979), 141–156. MR 520618, DOI 10.1016/0024-3795(79)90098-3
- William F. Trench, Proof of a conjecture of Askey on orthogonal expansions with positive coefficients, Bull. Amer. Math. Soc. 81 (1975), no. 5, 954–956. MR 374798, DOI 10.1090/S0002-9904-1975-13912-7
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- M. Wayne Wilson, Nonnegative expansions of polynomials, Proc. Amer. Math. Soc. 24 (1970), 100–102. MR 287244, DOI 10.1090/S0002-9939-1970-0287244-8
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 69-72
- MSC: Primary 42A52
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481893-7
- MathSciNet review: 0481893