On the duality between Asplund spaces and spaces with the Radon-Nikodým property
HTML articles powered by AMS MathViewer
- by Francis Sullivan PDF
- Proc. Amer. Math. Soc. 71 (1978), 155-156 Request permission
Abstract:
A simple proof of the following result of Stegall is given. Let E be a real Banach space, then E is an Asplund space if ${E^ \ast }$ has the Radon-Nikodým property.References
- R. Anantharaman, T. Lewis, and J. H. M. Whitfield, Smoothability, strong smoothability and dentability in Banach spaces, Canad. Math. Bull. 24 (1981), no. 1, 59–68. MR 611210, DOI 10.4153/CMB-1981-009-9
- Edgar Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31–47. MR 231199, DOI 10.1007/BF02391908
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), no. 4, 735–750. MR 390721, DOI 10.1215/S0012-7094-75-04261-1
- Charles Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodým property, Israel J. Math. 29 (1978), no. 4, 408–412. MR 493268, DOI 10.1007/BF02761178
- Charles Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223. MR 374381, DOI 10.1090/S0002-9947-1975-0374381-1
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 155-156
- MSC: Primary 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482090-1
- MathSciNet review: 0482090