Boundary representations and tensor products of $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Alan Hopenwasser PDF
- Proc. Amer. Math. Soc. 71 (1978), 95-98 Request permission
Abstract:
Let A and B be unital, generating linear subspaces of ${C^ \ast }$-algebras $\mathcal {A}$ and $\mathcal {B}$, respectively. If either $\mathcal {A}$ or $\mathcal {B}$ is a GCR algebra, then the set of boundary representations for $A \otimes B$ can be identified with the Cartesian product of the boundary representations for A with the boundary representations for B.References
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388 A. Guichardet, Tensor products of ${C^ \ast }$-algebras, Aarhus University Lecture Notes Series, No. 12, Aahrus, 1969.
- Alan Hopenwasser, Boundary representations on $C^{\ast }$-algebras with matrix units, Trans. Amer. Math. Soc. 177 (1973), 483–490. MR 322522, DOI 10.1090/S0002-9947-1973-0322522-2
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Donald Sarason, On spectral sets having connected complement, Acta Sci. Math. (Szeged) 26 (1965), 289–299. MR 188797
- W. Forrest Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. MR 69403, DOI 10.1090/S0002-9939-1955-0069403-4
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 95-98
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482241-9
- MathSciNet review: 0482241