Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A generalization of the canonical commutation and anticommutation relations

Author: Steven Robbins
Journal: Proc. Amer. Math. Soc. 71 (1978), 85-88
MSC: Primary 47B47
MathSciNet review: 0482363
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The relation $ {C^ \ast }C{C^ \ast } - {C^ \ast } = C{C^{ \ast 2}}$ involving a closed densely defined operator C generalizes both the canonical commutation relation of bosons and the canonical anticommutation relation of fermions. It is shown that the operators satisfying this relation can be classified by an index $ p,p = 0,1,2, \ldots ,\infty $.

References [Enhancements On Off] (What's this?)

  • [1] C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B47

Retrieve articles in all journals with MSC: 47B47

Additional Information

Keywords: Canonical commutation relations, canonical anticommutation relation
Article copyright: © Copyright 1978 American Mathematical Society