A generalization of the canonical commutation and anticommutation relations
HTML articles powered by AMS MathViewer
- by Steven Robbins PDF
- Proc. Amer. Math. Soc. 71 (1978), 85-88 Request permission
Abstract:
The relation ${C^ \ast }C{C^ \ast } - {C^ \ast } = C{C^{ \ast 2}}$ involving a closed densely defined operator C generalizes both the canonical commutation relation of bosons and the canonical anticommutation relation of fermions. It is shown that the operators satisfying this relation can be classified by an index $p,p = 0,1,2, \ldots ,\infty$.References
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 85-88
- MSC: Primary 47B47
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482363-2
- MathSciNet review: 0482363