Submetrizable spaces and almost $\sigma$-compact function spaces
HTML articles powered by AMS MathViewer
- by R. A. McCoy PDF
- Proc. Amer. Math. Soc. 71 (1978), 138-142 Request permission
Abstract:
It is shown that the space of real-valued continuous functions, with the compact-open topology, defined on a Urysohn k-space X is almost $\sigma$-compact if and only if X is submetrizable.References
- H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785–796. MR 107222, DOI 10.2307/2372929
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144 R. A. McCoy, Submetrizable function spaces (submitted).
- Lynn A. Steen and J. Arthur Seebach Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1970. MR 0266131
- Giovanni Vidossich, Characterizing separability of function spaces, Invent. Math. 10 (1970), 205–208. MR 267522, DOI 10.1007/BF01403249
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 138-142
- MSC: Primary 54C35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482639-9
- MathSciNet review: 0482639