A maximum principle for compressible flow on a surface
HTML articles powered by AMS MathViewer
- by Lesley M. Sibner and Robert J. Sibner PDF
- Proc. Amer. Math. Soc. 71 (1978), 103-108 Request permission
Abstract:
We show that the speed of a steady, irrotational, subsonic flow on a surface cannot attain its maximum at a point of positive Gauss curvature.References
- Lipman Bers, Mathematical aspects of subsonic and transonic gas dynamics, Surveys in Applied Mathematics, Vol. 3, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096477
- L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 111–140. MR 0076981
- S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797. MR 18022, DOI 10.1090/S0002-9904-1946-08647-4 E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, S.-B. Preuss. Akad. Wiss. Physik-Math. Kl. 19 (1927), 147-152.
- L. M. Sibner and R. J. Sibner, A non-linear Hodge-de-Rham theorem, Acta Math. 125 (1970), 57–73. MR 281231, DOI 10.1007/BF02392330
- Lesley M. Sibner, Non-linear Hodge theory: compact manifolds, Global analysis and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys., Trieste, 1972) Internat. Atomic Energy Agency, Vienna, 1974, pp. 121–127. MR 0436186 —, Non-linear Hodge theory: Applications, Advances in Math. (to appear). —, Transonic flow on an axiallysymmetric torus, J. Math. Anal. Appl. (to appear).
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 103-108
- MSC: Primary 58A10; Secondary 58G10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0482795-2
- MathSciNet review: 0482795