Entire functions with almost radially distributed values
HTML articles powered by AMS MathViewer
- by Shigeru Kimura PDF
- Proc. Amer. Math. Soc. 71 (1978), 73-78 Request permission
Abstract:
Let $f(z)$ be an entire function of finite lower order. Assume that there exist a positive number h and an unbounded sequence $\{ {w_n}\} _{n = 1}^\infty$ such that all roots of the equations $f(z) = {w_n}(n = 1,2, \ldots )$ lie in $\{ z;|\operatorname {Im} z| < h\}$. Then $f(z)$ is a polynomial of degree not greater than two. The hypothesis of the finiteness of lower order of $f(z)$ cannot be removed.References
- Albert Edrei, Meromorphic functions with three radially distributed values, Trans. Amer. Math. Soc. 78 (1955), 276–293. MR 67982, DOI 10.1090/S0002-9947-1955-0067982-9
- Albert Edrei, The deficiencies of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1–21. MR 158079
- Albert Edrei and Wolfgang H. J. Fuchs, Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. (3) 12 (1962), 315–344. MR 138765, DOI 10.1112/plms/s3-12.1.315
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Maurice Heins, On a notion of convexity connected with a method of Carleman, J. Analyse Math. 7 (1959), 53–77. MR 114000, DOI 10.1007/BF02787680
- D. F. Shea, On the Valiron deficiencies of meromorphic functions of finite order, Trans. Amer. Math. Soc. 124 (1966), 201–227. MR 200458, DOI 10.1090/S0002-9947-1966-0200458-1
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 73-78
- MSC: Primary 30A70
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486525-X
- MathSciNet review: 0486525