Homomorphisms of lattices of continuous functions
HTML articles powered by AMS MathViewer
- by R. Mena and B. Roth PDF
- Proc. Amer. Math. Soc. 71 (1978), 11-12 Request permission
Abstract:
We prove that for Y a compact Hausdorff space, every lattice homomorphism from $C(Y)$ to $C(X)$ which takes each constant function on Y to the same function on X is linear.References
- K. Gęba and Z. Semadeni, Spaces of continuous functions. V. On linear isotonical embedding of $C(\Omega _{1})$ into $C(\Omega _{2})$, Studia Math. 19 (1960), 303–320. MR 117535, DOI 10.4064/sm-19-3-303-320
- Irving Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617–623. MR 20715, DOI 10.1090/S0002-9904-1947-08856-X
- Irving Kaplansky, Lattices of continuous functions. II, Amer. J. Math. 70 (1948), 626–634. MR 26240, DOI 10.2307/2372202
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 11-12
- MSC: Primary 46E15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487414-7
- MathSciNet review: 0487414