Lie triple derivations of von Neumann algebras
HTML articles powered by AMS MathViewer
- by C. Robert Miers PDF
- Proc. Amer. Math. Soc. 71 (1978), 57-61 Request permission
Abstract:
A Lie triple derivation of an associative algebra M is a linear map $L:M \to M$ such that \[ L[[X,Y],Z] = [ {[L(X),Y],Z} ] + [ {[X,L(Y)],Z} ] + [ {[X,Y],L(Z)} ]\] for all $X,Y,Z \in M$. (Here $[X,Y] = XY - YX$ and [M, M] is the linear subspace of M generated by such terms.) We show that if M is a von Neumann algebra with no central abelian summands then there exists an operator $A \in M$ such that $L(X) = [A,X] + \lambda (X)$ where $\lambda :M \to {Z_M}$ is a linear map which annihilates brackets of operators in M.References
-
J. Dixmier, Les algèbres d’operateurs dans l’espace Hilbertien, Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1969.
- Richard A. Howland, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math. Soc. 145 (1969), 383–396. MR 252441, DOI 10.1090/S0002-9947-1969-0252441-0
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- William G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242. MR 45702, DOI 10.1090/S0002-9947-1952-0045702-9
- Wallace S. Martindale III, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183–187. MR 166234
- C. Robert Miers, Derived ring isomorphisms of von Neumann algebras, Canadian J. Math. 25 (1973), 1254–1268. MR 336365, DOI 10.4153/CJM-1973-132-0
- C. Robert Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403–409. MR 315466
- C. Robert Miers, Lie $^*$-triple homomorphisms into von Neumann algebras, Proc. Amer. Math. Soc. 58 (1976), 169–172. MR 410406, DOI 10.1090/S0002-9939-1976-0410406-9
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618
- Shôichirô Sakai, Derivations of $W^{\ast }$-algebras, Ann. of Math. (2) 83 (1966), 273–279. MR 193528, DOI 10.2307/1970432
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 57-61
- MSC: Primary 46L10; Secondary 17B65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487480-9
- MathSciNet review: 0487480