The binary digits of a power
HTML articles powered by AMS MathViewer
- by Kenneth B. Stolarsky PDF
- Proc. Amer. Math. Soc. 71 (1978), 1-5 Request permission
Abstract:
Let $B(m)$ denote the number of ones in the binary expansion of the integer $m \geqslant 1$ and let ${r_h}(m) = B({m^h})/B(m)$ where h is a positive integer. The maximal order of magnitude of ${r_h}(m)$ is $c(h){(\log m)^{(h - 1)/h}}$ where $c(h) > 0$ depends only on h. That this is best possible follows from the Bose-Chowla theorem. The minimal order of magnitude of ${r_2}(m)$ is at most $c{(\log \log m)^2}/\log m$ where $c > 0$ is an absolute constant.References
- A. S. Besicovitch, The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Z. 39 (1935), no. 1, 146–156. MR 1545494, DOI 10.1007/BF01201350
- R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/63), 141–147. MR 144877, DOI 10.1007/BF02566968
- H. Davenport and P. Erdös, Note on normal decimals, Canad. J. Math. 4 (1952), 58–63. MR 47084, DOI 10.4153/cjm-1952-005-3
- Hubert Delange, Sur la fonction sommatoire de la fonction“somme des chiffres”, Enseign. Math. (2) 21 (1975), no. 1, 31–47 (French). MR 379414
- M. P. Drazin and J. Stanley Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc. 48 (1952), 555–565. MR 49959, DOI 10.1017/s0305004100076313
- P. Erdös, On the irrationality of certain series, Nederl. Akad. Wetensch. Proc. Ser. A. 60 = Indag. Math. 19 (1957), 212–219. MR 0086841
- H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
- I. Kátai and J. Mogyoródi, On the distribution of digits, Publ. Math. Debrecen 15 (1968), 57–68. MR 236139
- D. J. Newman and Morton Slater, Binary digit distribution over naturally defined sequences, Trans. Amer. Math. Soc. 213 (1975), 71–78. MR 384734, DOI 10.1090/S0002-9947-1975-0384734-3
- I. Shiokawa and S. Uchiyama, On some properties of the dyadic Champernowne numbers, Acta Math. Acad. Sci. Hungar. 26 (1975), 9–27. MR 379419, DOI 10.1007/BF01895945 J. R. Samborski, Problem E2667, Amer. Math. Monthly 84 (1977), 567.
- Kenneth B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), no. 4, 717–730. MR 439735, DOI 10.1137/0132060 K. B. Stolarky and J. B. Muskat, The number of binary digits in multiples of n (in prep.).
- Kenneth B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arith. 38 (1980/81), no. 2, 117–128. MR 604228, DOI 10.4064/aa-38-2-117-128
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 1-5
- MSC: Primary 10A40
- DOI: https://doi.org/10.1090/S0002-9939-1978-0495823-5
- MathSciNet review: 495823