Contraction semigroups, stabilization, and the mean ergodic theorem
HTML articles powered by AMS MathViewer
- by Robert E. O’Brien PDF
- Proc. Amer. Math. Soc. 71 (1978), 89-94 Request permission
Abstract:
Consider the semidynamical system, $\dot x = Ax + Bu$, where A generates a ${C_0}$-contraction semigroup and B is bounded. If the system is controllable then it is weakly stabilizable. If in addition the semigroup is quasi-compact and B is compact, the mean ergodic theorem implies that the stability is uniform and exponential.References
-
A. V. Balakrishnan, Introduction to optimization theory in Hilbert space, Springer, Berlin, 1973.
- H. O. Fattorini, On complete controllability of linear systems, J. Differential Equations 3 (1967), 391–402. MR 212322, DOI 10.1016/0022-0396(67)90039-3
- S. R. Foguel, The ergodic theorem for Markov processes, Israel J. Math. 4 (1966), 11–22. MR 205323, DOI 10.1007/BF02760066
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535 R. E. O’Brien, Controllability, stabilization and contraction semigroups in Hilbert space, Dissertation, George Washington Univ., 1977.
- R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199–221. MR 54167, DOI 10.1090/S0002-9947-1953-0054167-3
- Marshall Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control 12 (1974), 500–508. MR 0353107, DOI 10.1137/0312038 C. T. Taam, Lectures on differential equations on a Banach space (unpublished). K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1966.
- Kôsaku Yosida and Shizuo Kakutani, Operator-theoretical treatment of Markoff’s process and mean ergodic theorem, Ann. of Math. (2) 42 (1941), 188–228. MR 3512, DOI 10.2307/1968993
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 89-94
- MSC: Primary 93D15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0495844-2
- MathSciNet review: 495844