Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A criterion for Perron integrability
HTML articles powered by AMS MathViewer

by D. N. Sarkhel PDF
Proc. Amer. Math. Soc. 71 (1978), 109-112 Request permission

Abstract:

It is shown that a measurable function $f:I = [a,b] \to {R_e}$ is necessarily Perron integrable if there exists at least one pair of functions $u,l:I \to R$ such that (i) $u(x - ) \leqslant u(x) \leqslant u(x + )$ and $l(x - ) \geqslant l(x) \geqslant l(x + )$ on I, (ii) $I\backslash ({E_1} \cup {E_2})$ is countable, where ${E_1} = \{ x|{D_ - }u(x) > - \infty ,{D^ - }l(x) < \infty \}$ and ${E_2} = \{ x|{D_ + }u(x) > - \infty ,{D^ + }l(x) < \infty \}$, and (iii) $\max \{ {D_ - }u(x),{D_ + }u(x)\} \geqslant f(x) \geqslant \min \{ {D^ - }l(x),{D^ + }l(x)\}$ a.e. on I. In the special case when u and l are respectively major and minor functions of f in the sense of H. Bauer, the result was proved by J. Marcinkiewicz.
References
  • Hans Bauer, Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen, Monatsh. Math. Phys. 26 (1915), no. 1, 153–198 (German). MR 1548647, DOI 10.1007/BF01999447
  • Heinrich Hake, Über de la Vallée Poussins Ober-und Unterfunktionen einfacher Integrale und die Integraldefinition von Perron, Math. Ann. 83 (1921), no. 1-2, 119–142 (German). MR 1512004, DOI 10.1007/BF01464233
  • E. J. McShane, Integration, Princeton Math. Series, 7, Princeton Univ. Press, Princeton, N. J., 1944.
  • Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A39
  • Retrieve articles in all journals with MSC: 26A39
Additional Information
  • © Copyright 1978 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 71 (1978), 109-112
  • MSC: Primary 26A39
  • DOI: https://doi.org/10.1090/S0002-9939-1978-0499032-5
  • MathSciNet review: 0499032