A criterion for Perron integrability
HTML articles powered by AMS MathViewer
- by D. N. Sarkhel PDF
- Proc. Amer. Math. Soc. 71 (1978), 109-112 Request permission
Abstract:
It is shown that a measurable function $f:I = [a,b] \to {R_e}$ is necessarily Perron integrable if there exists at least one pair of functions $u,l:I \to R$ such that (i) $u(x - ) \leqslant u(x) \leqslant u(x + )$ and $l(x - ) \geqslant l(x) \geqslant l(x + )$ on I, (ii) $I\backslash ({E_1} \cup {E_2})$ is countable, where ${E_1} = \{ x|{D_ - }u(x) > - \infty ,{D^ - }l(x) < \infty \}$ and ${E_2} = \{ x|{D_ + }u(x) > - \infty ,{D^ + }l(x) < \infty \}$, and (iii) $\max \{ {D_ - }u(x),{D_ + }u(x)\} \geqslant f(x) \geqslant \min \{ {D^ - }l(x),{D^ + }l(x)\}$ a.e. on I. In the special case when u and l are respectively major and minor functions of f in the sense of H. Bauer, the result was proved by J. Marcinkiewicz.References
- Hans Bauer, Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen, Monatsh. Math. Phys. 26 (1915), no. 1, 153–198 (German). MR 1548647, DOI 10.1007/BF01999447
- Heinrich Hake, Über de la Vallée Poussins Ober-und Unterfunktionen einfacher Integrale und die Integraldefinition von Perron, Math. Ann. 83 (1921), no. 1-2, 119–142 (German). MR 1512004, DOI 10.1007/BF01464233 E. J. McShane, Integration, Princeton Math. Series, 7, Princeton Univ. Press, Princeton, N. J., 1944.
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 109-112
- MSC: Primary 26A39
- DOI: https://doi.org/10.1090/S0002-9939-1978-0499032-5
- MathSciNet review: 0499032