A CRITERION FOR PERRON INTEGRABILITY

D. N. SARKHEL

Abstract. It is shown that a measurable function \(f: I = [a, b] \to \mathbb{R} \) is necessarily Perron integrable if there exists at least one pair of functions \(u, l: I \to \mathbb{R} \) such that (i) \(u(x -) < u(x) < u(x +) \) and \(l(x -) > l(x) > l(x +) \) on \(I \), (ii) \(I \setminus (E_1 \cup E_2) \) is countable, where \(E_1 = \{ x | D_- u(x) > -\infty, D^- l(x) < \infty \} \) and \(E_2 = \{ x | D_+ u(x) > -\infty, D^+ l(x) < \infty \} \), and (iii) \(\max\{ D_- u(x), D_+ u(x) \} \geq f(x) \geq \min\{ D^- l(x), D^+ l(x) \} \) a.e. on \(I \). In the special case when \(u \) and \(l \) are respectively major and minor functions of \(f \) in the sense of H. Bauer, the result was proved by J. Marcinkiewicz.

The purpose of this note is to prove the following theorem.

Theorem. A measurable function \(f: I = [a, b] \to \mathbb{R} \) is Perron integrable (\(P \)-integrable) if (and only if) there exists at least one pair of functions \(u, l: I \to \mathbb{R} \) such that (i) \(u(x -) < u(x) < u(x +) \) and \(l(x -) > l(x) > l(x +) \) on \(I \), (ii) \(I \setminus (E_1 \cup E_2) \) is countable, where \(E_1 = \{ x | D_- u(x) > -\infty, D^- l(x) < \infty \} \) and \(E_2 = \{ x | D_+ u(x) > -\infty, D^+ l(x) < \infty \} \), and (iii) \(\max\{ D_- u(x), D_+ u(x) \} \geq f(x) \geq \min\{ D^- l(x), D^+ l(x) \} \) a.e. on \(I \).

(Convention: for any \(g: I \to \mathbb{R} \), \(g(a -) = g(a) \) and \(g(b +) = g(b) \).)

The extent of the Theorem will be clear from the following discussion if we compare the pair of functions \(u, l \) with pairs of major and minor functions defined by various authors.

A major function \(u \) of \(f \) defined by Bauer [1] is continuous and fulfils the condition \(-\infty \neq D_- u(x) > f(x) \) everywhere, that defined by Hake [2] is continuous and fulfils the condition \(-\infty \neq D_+ u(x) > f(x) \) everywhere, that defined by Saks [4] is not necessarily continuous but fulfils the condition \(-\infty \neq D_- u(x) > f(x) \) everywhere, and that (a right major, to be precise) defined by McShane [3] is continuous and fulfils the condition \(-\infty \neq D_+ u(x) > f(x) \) nearly everywhere. Unlike others, McShane defines \(P \)-integrability in terms of tetrads of both right and left major and minor functions (defined analogously). Regarding Saks’ definition, we first observe that the condition \(D_- u(x) > -\infty \) trivially implies that \(\lim \sup_{t \to x^-} u(t) < u(x) < \lim \inf_{t \to x^+} u(t) \). On the other hand, if \(u \) is to be a major function of a \(P \)-integrable function, then \(u(x -) \) and \(u(x +) \) must exist finitely everywhere, since the corresponding indefinite integral (\(F \), say) is continuous.

Received by the editors June 7, 1977.

Key words and phrases. \(P \)-integrable, major function, minor function, left major, left minor, right major, right minor, \(VB^* \).

© American Mathematical Society 1978

109
and since \(u - F \) is nondecreasing. Therefore, we can suppose without loss of
generality that \(u(x -) \leq u(x) \leq u(x +) \) everywhere. Similar remarks hold
for minor functions.

The Theorem is an improvement of a known result (see [4, (3.13), p. 253])
due to J. Marcinkiewicz which states that a measurable function \(f: I \rightarrow \mathbb{R} \)
is necessarily \(P \)-integrable if it possesses at least one pair of continuous major
and minor functions in the sense of Saks; also, the former virtually nullifies
Saks’ remark [4, p. 253, infra] that in the latter the hypothesis of continuity of
the major and minor functions is essential. In support of his remark, Saks
considers the functions \(f, U, V \) on \([0, 1]\) defined by \(f(x) = -1/x^2 \) for \(x > 0 \)
and \(f(0) = 0 \), \(U(x) = 1/x \) for \(x > 0 \) and \(V(0) = 0 \), and \(U(x) \equiv 0 \). He says
that \(U \) is a major function and \(V \) is a minor function of \(f \), and yet \(f \) is not
\(P \)-integrable. But, we observe that in no sense can \(V \) be called a minor
function, since \(D^+V(0) = \infty = V(0+) \). Indeed, our Theorem implies that
this function \(f \) cannot have a minor function of any kind.

We mention two implications of the Theorem. Let

\[
U_-(f, I) = \{ u: I \rightarrow \mathbb{R} | u(a) = 0, u(x -) < u(x) < u(x +) \text{ on } I, D_- u(x) > -\infty \text{ n.e. on } I, D_- u(x) > f(x) \text{ a.e. on } I \},
\]

\[
L^-(f, I) = \{ l: I \rightarrow \mathbb{R} | -l \in U_-(f, I) \},
\]

\[
U_+(f, I) = \{ u: I \rightarrow \mathbb{R} | u(a) = 0, u(x -) < u(x) < u(x +) \text{ on } I, D_+ u(x) < -\infty \text{ n.e. on } I, D_+ u(x) > f(x) \text{ a.e. on } I \},
\]

\[
L^+(f, I) = \{ l: I \rightarrow \mathbb{R} | -l \in U_+(f, I) \}. \]

Call a member of \(U_-(f, I) \) a left major (of \(f \)), that of \(L^-(f, I) \) a left minor,
that of \(U_+(f, I) \) a right major, and that of \(L^+(f, I) \) a right minor. Then the
theory of the \(P \)-integral can be developed equivalently and directly in terms
of these left major and left minor functions and, also, in terms of these right
major and right minor functions. (In either case, \(u - l \) is nondecreasing,
the continuity of the indefinite integral \(F \) can be proved easily by using the
inequalities \(u(x -) < u(x) < u(x +) \), \(l(x -) > l(x) > l(x +) \) and \(l(x) < F(x) < u(x) \), and the differential property of \(F \) can be proved by using
first obvious modifications of the usual method and then appealing to the
Denjoy relations between the derivatives.) Both these approaches unify and
simplify the approaches of the authors cited above. In particular, following
either of these two approaches and using the Theorem, McShane’s direct
proof of the theorem on \(P \)-integration by parts [3, 65.1, p. 332] can be
shortened considerably.

Proof of the Theorem. Plainly (i) implies that \(u(x -) < \infty, u(x +) > -\infty, l(x -) > -\infty \) and \(l(x +) < \infty \). Also, using (i), (ii) and (iii), and
using minor modifications of well known methods (consult, e.g., [3, 34.1, 57.4]
and [4, p. 203, supra]), it is readily proved that \(u - l \) is nondecreasing. Noting
these and referring to the hard core of the proof of Theorem (3.13) [4, p. 253]
and to Theorem (7.1) [4, p. 229], it is enough to show that the interval \(I \) can

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
be expressed as the union of a countable family of sets on each of which \(u \) is \(\mathit{VB} \) [4, p. 228].

To this end, we first observe that, for every \(x \in E_1 \) there is a positive integer \(n \) such that
\[
 u(x) - u(y) > -n(x - y) \quad \text{for all } y \in (x - 1/n, x)
\]
and
\[
 l(x) - l(y) < n(x - y) \quad \text{for all } y \in (x - 1/n, x).
\]
Since the function \(w = u - l \) is nondecreasing, it follows from (1) and (2) that, for all \(y \in (x - 1/n, x) \),
\[
 -n(x - y) - w(x) + w(y) < u(x) - u(y) = l(x) - l(y) + w(x) - w(y)
\]
that is,
\[
 |u(x) - u(y)| < n(x - y) + w(x) - w(y).
\]
Similarly, for every \(x \in E_2 \) there is a positive integer \(n \) such that, for all \(y \in (x, x + 1/n) \),
\[
 |u(y) - u(x)| < n(y - x) + w(y) - w(x).
\]
Now, let
\[
 v(x, y) = |u(x) - u(y)| + w(x) - w(y),
\]
and, for each positive integer \(n \), let
\[
 A_n = \{ x \in I^0 | v(y, x) < n(x - y) \forall y \in (x - 1/n, x) \}
\]
and
\[
 B_n = \{ x \in I^0 | v(x, y) < n(y - x) \forall y \in (x, x + 1/n) \}.
\]
Then, by hypothesis (ii) and by the preceding observations, it is clear that the set \(I \setminus \bigcup_{n=1}^{\infty} (A_n \cup B_n) \) is countable. Therefore, the desired result will be proved if we can show that, for every \(n \) and for every closed interval \(J \) of length less than \(1/n \), \(u \) is \(\mathit{VB} \) on each of the sets \(A_n \cap J \) and \(B_n \cap J \).

Because of symmetry, we give the proof for \(A_n \) only.
If \(y', y \in [x', x] \subset J \) where \(x', x \in A_n \), then we have
\[
 |u(y') - u(y)| \leq |u(y') - u(x)| + |u(x) - u(y)|
\]
\[
 < n(x - y') + w(x) - w(y') + n(x - y) + w(x) - w(y)
\]
\[
 < 2\{n(x - x') + w(x) - w(x')\},
\]
whence it follows at once that \(u \) is \(\mathit{VB} \) on \(A_n \cap J \).

REFERENCES

2. H. Hake, \textit{Über de la Vallée Poussins Ober- und Unterfunktionen einfacher Integrale und die

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KALYANI, KALYANI, WEST BENGAL, INDIA