Fibered stable compacta have finite homotopy type
HTML articles powered by AMS MathViewer
- by Ross Geoghegan PDF
- Proc. Amer. Math. Soc. 71 (1978), 123-129 Request permission
Erratum: Proc. Amer. Math. Soc. 74 (1979), 391.
Abstract:
It is proved that a fibered compact metric space having the shape of a CW complex has the homotopy type of that complex, and that its Wall obstruction to finiteness is zero.References
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357
- Tammo tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971), 159–167. MR 293625
- David A. Edwards and Ross Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521–535. MR 375330, DOI 10.2307/1970939
- David A. Edwards and Ross Geoghegan, The stability problem in shape, and a Whitehead theorem in pro-homotopy, Trans. Amer. Math. Soc. 214 (1975), 261–277. MR 413095, DOI 10.1090/S0002-9947-1975-0413095-6
- David A. Edwards and Harold M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR 0428322
- Ross Geoghegan, Compacta with the homotopy type of finite complexes, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 603–608. MR 537753
- Ross Geoghegan and R. C. Lacher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), no. 1, 25–27. MR 418029, DOI 10.4064/fm-92-1-25-27
- Harold M. Hastings, Fibrations of compactly generated spaces, Michigan Math. J. 21 (1974), 243–251 (1975). MR 367985
- Sibe Mardešić and Jack Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), no. 1, 41–59. MR 298634, DOI 10.4064/fm-72-1-41-59
- Michael Mather, Counting homotopy types of manifolds, Topology 3 (1965), 93–94. MR 176470, DOI 10.1016/0040-9383(65)90050-9
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Kiiti Morita, On shapes of topological spaces, Fund. Math. 86 (1975), no. 3, 251–259. MR 388385, DOI 10.4064/fm-86-3-251-259
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- L. Siebenmann, L. Guillou, and H. Hähl, Les voisinages ouverts réguliers, Ann. Sci. École Norm. Sup. (4) 6 (1973), 253–293 (French). MR 331399
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
- Arne Strøm, Note on cofibrations, Math. Scand. 19 (1966), 11–14. MR 211403, DOI 10.7146/math.scand.a-10791
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
- James E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk, Ann. of Math. (2) 106 (1977), no. 1, 1–18. MR 451247, DOI 10.2307/1971155
- J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51–110. MR 35997, DOI 10.2307/1969511 R. Geoghegan, The inverse limit of homotopy equivalences between towers of fibrations is a homotopy equivalence-a simple proof (submitted).
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 123-129
- MSC: Primary 55D15; Secondary 57A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0515418-4
- MathSciNet review: 0515418