## Fibered stable compacta have finite homotopy type

HTML articles powered by AMS MathViewer

- by Ross Geoghegan PDF
- Proc. Amer. Math. Soc.
**71**(1978), 123-129 Request permission

Erratum: Proc. Amer. Math. Soc.

**74**(1979), 391.

## Abstract:

It is proved that a fibered compact metric space having the shape of a CW complex has the homotopy type of that complex, and that its Wall obstruction to finiteness is zero.## References

- Morton Brown,
*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478–483. MR**115157**, DOI 10.1090/S0002-9939-1960-0115157-4 - T. A. Chapman,
*Lectures on Hilbert cube manifolds*, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR**0423357** - Tammo tom Dieck,
*Partitions of unity in homotopy theory*, Compositio Math.**23**(1971), 159–167. MR**293625** - David A. Edwards and Ross Geoghegan,
*Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction*, Ann. of Math. (2)**101**(1975), 521–535. MR**375330**, DOI 10.2307/1970939 - David A. Edwards and Ross Geoghegan,
*The stability problem in shape, and a Whitehead theorem in pro-homotopy*, Trans. Amer. Math. Soc.**214**(1975), 261–277. MR**413095**, DOI 10.1090/S0002-9947-1975-0413095-6 - David A. Edwards and Harold M. Hastings,
*Čech and Steenrod homotopy theories with applications to geometric topology*, Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976. MR**0428322** - Ross Geoghegan,
*Compacta with the homotopy type of finite complexes*, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 603–608. MR**537753** - Ross Geoghegan and R. C. Lacher,
*Compacta with the shape of finite complexes*, Fund. Math.**92**(1976), no. 1, 25–27. MR**418029**, DOI 10.4064/fm-92-1-25-27 - Harold M. Hastings,
*Fibrations of compactly generated spaces*, Michigan Math. J.**21**(1974), 243–251 (1975). MR**367985** - Sibe Mardešić and Jack Segal,
*Shapes of compacta and ANR-systems*, Fund. Math.**72**(1971), no. 1, 41–59. MR**298634**, DOI 10.4064/fm-72-1-41-59 - Michael Mather,
*Counting homotopy types of manifolds*, Topology**3**(1965), 93–94. MR**176470**, DOI 10.1016/0040-9383(65)90050-9 - John Milnor,
*On spaces having the homotopy type of a $\textrm {CW}$-complex*, Trans. Amer. Math. Soc.**90**(1959), 272–280. MR**100267**, DOI 10.1090/S0002-9947-1959-0100267-4 - Kiiti Morita,
*On shapes of topological spaces*, Fund. Math.**86**(1975), no. 3, 251–259. MR**388385**, DOI 10.4064/fm-86-3-251-259 - Daniel G. Quillen,
*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432** - L. Siebenmann, L. Guillou, and H. Hähl,
*Les voisinages ouverts réguliers*, Ann. Sci. École Norm. Sup. (4)**6**(1973), 253–293 (French). MR**331399** - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - Arne Strøm,
*Note on cofibrations*, Math. Scand.**19**(1966), 11–14. MR**211403**, DOI 10.7146/math.scand.a-10791 - C. T. C. Wall,
*Finiteness conditions for $\textrm {CW}$-complexes*, Ann. of Math. (2)**81**(1965), 56–69. MR**171284**, DOI 10.2307/1970382 - James E. West,
*Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk*, Ann. of Math. (2)**106**(1977), no. 1, 1–18. MR**451247**, DOI 10.2307/1971155 - J. H. C. Whitehead,
*A certain exact sequence*, Ann. of Math. (2)**52**(1950), 51–110. MR**35997**, DOI 10.2307/1969511
R. Geoghegan,

*The inverse limit of homotopy equivalences between towers of fibrations is a homotopy equivalence-a simple proof*(submitted).

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**71**(1978), 123-129 - MSC: Primary 55D15; Secondary 57A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0515418-4
- MathSciNet review: 0515418