Pseudo-similarity for matrices over a field
HTML articles powered by AMS MathViewer
- by R. E. Hartwig and F. J. Hall PDF
- Proc. Amer. Math. Soc. 71 (1978), 6-10 Request permission
Abstract:
We call two square matrices A and B (over a ring) pseudo-similar, if matrices $X,{X^ - },{X^ = }$ exist, such that ${X^ - }AX = B,XB{X^ = }A,X{X^ - }X = X$ and $X{X^ = }X = X$. We show that if A and B have the same dimension and if the ring is a field, then pseudo-similarity implies similarity, and hence that pseudo-similarity is an equivalence relation.References
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- R. E. Hartwig, Some properties of hypercompanion matrices, Indust. Math. 24 (1974), 77–84. MR 364293
- Robert E. Hartwig, The resultant and the matrix equation $AX=XB$, SIAM J. Appl. Math. 22 (1972), 538–544. MR 304393, DOI 10.1137/0122048
- Nobuo Shinozaki and Masaaki Sibuya, The reverse order law $(AB)^{-}=B^{-}A^{-}$, Linear Algebra Appl. 9 (1974), 29–40. MR 354723, DOI 10.1016/0024-3795(74)90023-8
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 6-10
- MSC: Primary 15A21
- DOI: https://doi.org/10.1090/S0002-9939-1978-0573006-8
- MathSciNet review: 0573006