A generalization of the Riesz-Herglotz theorem on representing measures
HTML articles powered by AMS MathViewer
- by Peter A. Loeb PDF
- Proc. Amer. Math. Soc. 71 (1978), 65-68 Request permission
Abstract:
A simple construction is given that obtains maximal representing measures for positive harmonic functions on a domain W as the $\mathrm {weak}^*$ limits of finite sums of point masses on ${[0, + \infty ]^W}$. This new standard result, new even for the unit disk, is established for very general elliptic differential equations and domains, in fact, for a Brelot harmonic space, using nonstandard analysis.References
- Robert M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), no. 2, 327–332. MR 480925, DOI 10.1090/S0002-9939-1978-0480925-X
- Marcel Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, Berlin-New York, 1971. Enlarged edition of a course of lectures delivered in 1966. MR 0281940 G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Verhandl. Sächs Akad. Wiss. Leipzig Math.-Phys. Klasse 63 (1911), 501-511.
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- Peter A. Loeb, An exiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 167–208 (English, with French summary). MR 227455
- Peter A. Loeb, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), no. 1-2, 154–187. MR 457757, DOI 10.1007/BF02756567 —, Weak limits of measures and the standard part map (preprint).
- Peter A. Loeb and Bertram Walsh, The equivalence of Harnack’s principle and Harnack’s inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 2, 597–600. MR 190360
- Robert S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137–172. MR 3919, DOI 10.1090/S0002-9947-1941-0003919-6
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Frédéric Riesz, Sur certains systèmes singuliers d’équations intégrales, Ann. Sci. École Norm. Sup. (3) 28 (1911), 33–62 (French). MR 1509135
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 65-68
- MSC: Primary 31D05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0588522-2
- MathSciNet review: 0588522