Capacity and equidistribution for holomorphic maps from $\textbf {C}^{2}$ to $\textbf {C}^{2}$
HTML articles powered by AMS MathViewer
- by Robert E. Molzon PDF
- Proc. Amer. Math. Soc. 71 (1978), 46-48 Request permission
Abstract:
The relationship between equidistribution for holomorphic maps and sets of capacity zero are investigated.References
- James A. Carlson, A moving lemma for the transcendental Bezout problem, Ann. of Math. (2) 103 (1976), no. 2, 305–330. MR 409901, DOI 10.2307/1971008
- W. H. J. Fuchs, Topics in the theory of functions of one complex variable, Van Nostrand Mathematical Studies, No. 12, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. Manuscript prepared with the collaboration of Alan Schumitsky. MR 0220902
- Phillip A. Griffiths, On the Bezout problem for entire analytic sets, Ann. of Math. (2) 100 (1974), 533–552. MR 404700, DOI 10.2307/1970957 H. Wu, Remarks on the First Main Theorem of equidistribution theory. I, II, III, J. Differential Geometry 2 (1968), 197-202; 3 (1969), 83-94, 369-384.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 46-48
- MSC: Primary 32H25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0590431-X
- MathSciNet review: 0590431