Free subgroups of normal subgroups of the multiplicative group of skew fields
HTML articles powered by AMS MathViewer
- by A. I. Lichtman
- Proc. Amer. Math. Soc. 71 (1978), 174-178
- DOI: https://doi.org/10.1090/S0002-9939-1978-0480623-2
- PDF | Request permission
Abstract:
Let D be a skew field, ${D^ \ast }$ its multiplicative group and $H \triangleleft {D^ \ast }$. Then H contains a noncyclic free subgroup F, provided that there exists a nonabelian nilpotent-by-finite subgroup G of H.References
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- A. Lichtman, On subgroups of the multiplicative group of skew fields, Proc. Amer. Math. Soc. 63 (1977), no. 1, 15–16. MR 447432, DOI 10.1090/S0002-9939-1977-0447432-0
- W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8 (1957), 303–305. MR 83984, DOI 10.1090/S0002-9939-1957-0083984-8
- Eugene Schenkman, Group theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. MR 0197537
- A. I. Lihtman, On the normal subgroups of the multiplicative group of a skew field, Dokl. Akad. Nauk SSSR 152 (1963), 812–815 (Russian). MR 0156836
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938 B. L. Van der Waerden, Algebra. I, Springer-Verlag, Berlin and New York, 1971.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 174-178
- MSC: Primary 16A40; Secondary 20F99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0480623-2
- MathSciNet review: 0480623