A NECESSARY AND SUFFICIENT CONDITION FOR BLOCH FUNCTIONS

RICHARD M. TIMONEY

ABSTRACT. A necessary and sufficient condition is given for a subset \(E \subseteq \mathbb{C} \) to satisfy

\[
\text{Sup} \left\{ \left| f'(z) \right| (1 - |z|^2) \mid z \in f^{-1}(E) \right\} < \infty
\]

\[\Rightarrow \text{Sup} \left\{ \left| f'(z) \right| (1 - |z|^2) \mid z \in D \right\} < \infty\]

when \(f: D \to \mathbb{C} \) is analytic. The condition is that the complement of \(E \) should not contain large discs.

A Bloch function on \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \) is an analytic function \(f: D \to \mathbb{C} \) satisfying \(\text{Sup} \{ |f'(z)| (1 - |z|^2) \mid z \in D \} < \infty \). See [1] for other characterizations and some interesting properties of Bloch functions.

The following theorem is the main result of this note.

Theorem 1. Suppose \(E \subseteq \mathbb{C} \). Then the condition

\[
\text{Sup} \left\{ \left| f'(z) \right| (1 - |z|^2) \mid z \in f^{-1}(E) \right\} < \infty
\]

is a sufficient condition for an analytic function \(f: D \to \mathbb{C} \) to be a Bloch function if and only if the radii of the discs contained in \(\mathbb{C} - E \) are bounded above.

For example, \(E = \mathbb{Z}^2 = \) the set of Gaussian integers works, but no finite set \(E \) will work.

This theorem was motivated by a theorem of P. Lappan [3] about normal functions.

A meromorphic function \(f \) on \(D \) is said to be normal if

\[
\text{Sup} \left\{ |f'(z)| (1 - |z|^2) / (1 + |f(z)|^2) \mid z \in D \right\} < \infty
\]

(see [1]).

Theorem [LAPPAN 5-VALUE Theorem]. If \(f \) is a meromorphic function defined on the unit disc \(D \) and

\[
\text{Sup} \left\{ |f'(z)|(1 - |z|^2) / (1 + |f(z)|^2) \mid z \in f^{-1}(E) \right\} = M < \infty
\]

for any subset \(E \) of the Riemann sphere containing at least 5 points (3 finite points if \(f \) is analytic) then \(f \) is a normal function.

Since Bloch functions are closely related to normal functions it is natural to...
ask whether Lappan’s theorem has an analogue for Bloch functions. Theorem 1 answers this question. The author thanks L. A. Rubel for calling his attention to the problem.

Proof (Theorem 1). Suppose that the radii of the discs contained in \(C - E \) are bounded by \(R \) and \(f: D \rightarrow C \) is an analytic function with

\[
\sup \{|f'(z)|(1 - |z|^2)|z \in f^{-1}(E)\} = M < \infty.
\]

If \(f \) is not a Bloch function, then for each \(r > 0 \) there exists a schlicht disc \(\Delta = \{w \in C| |w - w_0| < r + R + 1\} \) in the range of \(f \) (i.e. \(f \) has a single-valued analytic inverse on \(\Delta \)—see [1]).

By hypothesis, \(\{w \in C| |w - w_0| < R + 1\} \subseteq C - E \) is false and so there exists \(w_0' \in E \) with \(|w_0' - w_0| < R + 1 \). Hence \(\{w \in C| |w - w_0| < r\} \) is a schlicht disc in the range of \(f \). Thus there exists a 1-1 conformal mapping \(\phi: D \rightarrow D \) so that \((f \circ \phi)(z) = w_0' + rz \). Hence \(|f'(\phi(0))| |\phi'(0)| = r \). By the SchwarzLemma (12.5.3 of [5]) \(|\phi'(0)| < 1 - |\phi(0)|^2 \) and so

\[
|f'(\phi(0))|(1 - |\phi(0)|^2) > r.
\]

Observe that \(\phi(0) \in f^{-1}(E) \), which means that a choice of \(r \) with \(r > M \) will contradict the supposition at the beginning of the proof. Thus \(f \) must be a Bloch function and the “if” part of the theorem is proved.

Notice that the above argument shows that every schlicht disc in the range of the Bloch function \(f \) has radius no larger than \(M + R \), and thus

\[
\sup \{|f'(z)|(1 - |z|^2)|z \in D\} \leq (M + R)/B
\]

where \(B \) is Bloch’s constant.

To show the converse it must be shown that, if \(C - E \) contains discs of arbitrarily large radii, then there exists an analytic function \(f \) on \(D \) which is not a Bloch function but satisfies the condition (\(* \)).

It is easy to see that \(C - E \) must contain an infinite sequence of disjoint discs of the form \(D_n = \{w \in C| |w - w_n| < n\} \) with \(|w_{n+1}| > |w_n| + 2n + 1 \) for each \(n \geq 1 \). For each \(n \) it is possible to construct a narrow open channel \(G_n \) joining \(D_n \) to \(D_{n+1} \) so that the following conditions both hold.

(i) \(G = \bigcup_{n=1}^{\infty}(D_n \cup G_n) \) is simply connected.

(ii) \(G \) does not contain any disc of radius larger than 1 centered at any point of \(G_n \).

By the Riemann mapping theorem there exists a 1-1 onto conformal map \(f: D \rightarrow G \). Since \(f \) has the schlicht discs \(D_n \) in its range it cannot be a Bloch function.

Suppose \(z \in D \) and \(f(z) \in E \). Then \(f(z) \in G_n \) for some \(n \) since \(D_n \subseteq C - E \) for each \(n \). By applying the \(\frac{1}{4} \) theorem [5, Theorem 14.14] to the function \(s \rightarrow f((s + z)/(1 + zs)) \) it follows that the range of \(f \) contains a (schlicht) disc of radius \(\frac{1}{4}|f'(z)|(1 - |z|^2) \) centered at \(f(z) \). Thus \(\frac{1}{4}|f'(z)|(1 - |z|^2) < 1 \) by (ii) and so \(\sup \{|f'(z)|(1 - |z|^2)|z \in f^{-1}(E)\} < 4 \). The proof of the theorem is now complete.

Remarks. (1) If \(E \subseteq C \) is such that the radii of the discs contained in
C - E are bounded and f is a meromorphic function satisfying (⋆) then f
must be analytic and thus a Bloch function (by Theorem 1).

(2) \(\mathfrak{B}_0 \) is defined to be the set of Bloch functions satisfying the condition
that \(|f'(z)|(1 - |z|^2) \to 0 \) as \(|z| \to 1 \). Since there exist bounded functions
which are not in \(\mathfrak{B}_0 \) (e.g. \(f(z) = w_0 + \delta \exp[(z + 1)/(z - 1)] \)) it follows that
\(E \subseteq \mathbb{C} \) satisfies
\[
|f'(z)|(1 - |z|^2) \to 0 \quad \text{as } |z| \to 1 \text{ with } z \in f^{-1}(E) \Rightarrow f \in \mathfrak{B}_0 \quad (\Box)
\]
if and only if E is dense in \(\mathbb{C} \). (Any function omitting the values E satisfies
(\Box).)

(3) In conjunction with Lappan's 5-value theorem, it can be shown that for
each subset E of the Riemann sphere where E contains at least 5 points there
exists an increasing function \(\alpha_E : [0, \infty) \to (0, \infty) \) such that
\[
\text{Sup}\left\{ |f'(z)|(1 - |z|^2)/(1 + |f(z)|^2) \mid z \in f^{-1}(E) \right\} = M < \infty
\]
implies
\[
\text{Sup}\left\{ |f'(z)|(1 - |z|^2)/(1 + |f(z)|^2) \mid z \in D \right\} \leq \alpha_E(M).
\]
The proof given by Lappan of his 5-value theorem does not give the existence
of \(\alpha_E \). However, by applying the lemma of [6] to the Moebius-invariant family
\(\mathcal{F} = \{ f \mid f \text{ meromorphic on } D \} \)
\[
\text{Sup}\left\{ |f'(z)|(1 - |z|^2)/(1 + |f(z)|^2) \mid z \in f^{-1}(E) \right\} \leq M
\]
in the same way that Lappan applied Theorem 1 of [4] it follows that \(\mathcal{F} \) is a
normal family. Hence, by the Marty criterion [2, p. 158]
\[
\text{Sup}\left\{ |f'(0)|/(1 + |f(0)|^2) \mid f \in \mathcal{F} \right\} \leq \alpha_E(M) < \infty.
\]
Next, \(f \in \mathcal{F} \) implies \(f((z + a)/(1 + \bar{a}z)) \in \mathcal{F} \) for each \(a \in D \) and this
implies \(|f(a)|(1 - |a|^2)/(1 + |f(a)|^2) \leq \alpha_E(M) \) for each \(a \in D \) and for each
\(f \in \mathfrak{F} \).

This minor modification of Lappan's result may be used to obtain a version
of the Lappan 5-value theorem for normal meromorphic functions defined on
\(\mathbb{C} \).

A meromorphic function \(f \) on \(\mathbb{C} \) is said to be normal if \(\text{Sup}\{|f'(z)|(1 + |f(z)|^2)|z \in \mathbb{C}\} < \infty \) or equivalently if the family \(\{ f(e^{ia}z + a) \mid a \in \mathbb{C}, a \in [0, 2\pi) \} \) is a normal family. The maps \(z \mapsto e^{ia}z + a \) are the conformal
isometries of \(\mathbb{C} \) in the Euclidean metric. Another equivalent condition is that
\(\{ f(z + a) \mid a \in \mathbb{C} \} \) be a normal family. These equivalences follow from the
Marty criterion [2, p. 158].

Theorem 2. Let E be a subset of the Riemann sphere containing at least 5
points. Let \(f \) be a meromorphic function on \(\mathbb{C} \) satisfying
\[
\text{Sup}\left\{ |f'(z)|/(1 + |f(z)|^2) \mid z \in f^{-1}(E) \right\} = M < \infty.
\]
Then \(f \) is a normal function and in fact
\[
\sup\{|f'(z)|/(1 - |f(z)|^2)|z \in \mathbb{C}\} < \alpha_{\mathbb{E}}(M).
\]

Proof. Fix \(z_0 \in \mathbb{C} \) and set \(g(z) = f(z_0 + z) \) for \(z \in D \). Then
\[
|g'(z)|(1 - |z|^2)/(1 + |g(z)|^2) < |f'(z_0 + z)|/(1 + |f(z_0 + z)|^2) < M
\]
for \(z \in g^{-1}(E) \). Thus \(|g'(0)|/(1 + |g(0)|^2) = |f'(z_0)|/(1 + |f(z_0)|^2) < \alpha_{\mathbb{E}}(M) \) as required.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401