A necessary and sufficient condition for Bloch functions
HTML articles powered by AMS MathViewer
- by Richard M. Timoney
- Proc. Amer. Math. Soc. 71 (1978), 263-266
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481012-7
- PDF | Request permission
Abstract:
A necessary and sufficient condition is given for a subset $E \subseteq {\mathbf {C}}$ to satisfy \[ \begin {array}{*{20}{c}} {\operatorname {Sup}\{ |f’(z)|(1 - |z{|^2})|z \in {f^{ - 1}}(E)\} < \infty } \\ { \Rightarrow \operatorname {Sup}\{ |f’(z)|(1 - |z{|^2})|z \in D\} < \infty } \\ \end {array} \] when $f:D \to {\mathbf {C}}$ is analytic. The condition is that the complement of E should not contain large discs.References
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Peter Lappan, A criterion for a meromorphic function to be normal, Comment. Math. Helv. 49 (1974), 492–495. MR 379850, DOI 10.1007/BF02566744
- A. J. Lohwater and Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A. I. 550 (1973), 12. MR 338381
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 263-266
- MSC: Primary 30A74
- DOI: https://doi.org/10.1090/S0002-9939-1978-0481012-7
- MathSciNet review: 0481012