## Oscillation criteria for second-order differential systems

HTML articles powered by AMS MathViewer

- by Shair Ahmad and C. C. Travis PDF
- Proc. Amer. Math. Soc.
**71**(1978), 247-252 Request permission

## Abstract:

Sufficient conditions for the oscillation of solutions to the differential system $X''(t) + A(t)X(t) = 0$ are established which are valid when the matrix*A*is not symmetric. An example is given to demonstrate that a condition known to be sufficient for the oscillation of solutions when

*A*is symmetric is not valid in the nonsymmetric case.

## References

- Shair Ahmad,
*On positivity of solutions and conjugate points of nonselfadjoint systems*, Bull. Acad. Polon. Sci. SΓ©r. Sci. Math.**27**(1979), no.Β 1, 71β75 (English, with Russian summary). MR**539335** - Shair Ahmad and Alan C. Lazer,
*On the components of extremal solutions of second order systems*, SIAM J. Math. Anal.**8**(1977), no.Β 1, 16β23. MR**430409**, DOI 10.1137/0508002 - Shair Ahmad and A. C. Lazer,
*An $N$-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems*, SIAM J. Math. Anal.**9**(1978), no.Β 6, 1137β1150. MR**512517**, DOI 10.1137/0509092 - W. Allegretto and L. Erbe,
*Oscillation criteria for matrix differential inequalities*, Canad. Math. Bull.**16**(1973), 5β10. MR**322263**, DOI 10.4153/CMB-1973-002-0 - W. A. Coppel,
*Disconjugacy*, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR**0460785** - Garret J. Etgen and James F. Pawlowski,
*Oscillation criteria for second order self adjoint differential systems*, Pacific J. Math.**66**(1976), no.Β 1, 99β110. MR**440147** - R. D. Gentry and C. C. Travis,
*Comparison of eigenvalues associated with linear differential equations of arbitrary order*, Trans. Amer. Math. Soc.**223**(1976), 167β179. MR**425241**, DOI 10.1090/S0002-9947-1976-0425241-X - A. G. Kartsatos,
*Oscillation of nonlinear systems of matrix differential equations*, Proc. Amer. Math. Soc.**30**(1971), 97β101. MR**280798**, DOI 10.1090/S0002-9939-1971-0280798-8 - M. S. Keener and C. C. Travis,
*Positive cones and focal points for a class of $n$th-order differential equations*, Trans. Amer. Math. Soc.**237**(1978), 331β351. MR**479377**, DOI 10.1090/S0002-9947-1978-0479377-X
β, - Kurt Kreith,
*Oscillation criteria for nonlinear matrix differential equations*, Proc. Amer. Math. Soc.**26**(1970), 270β272. MR**264163**, DOI 10.1090/S0002-9939-1970-0264163-4 - E. S. Noussair and C. A. Swanson,
*Oscillation criteria for differential systems*, J. Math. Anal. Appl.**36**(1971), 575β580. MR**296417**, DOI 10.1016/0022-247X(71)90039-4 - William T. Reid,
*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0273082** - K. Schmitt and H. L. Smith,
*Positive solutions and conjugate points for systems of differential equations*, Nonlinear Anal.**2**(1978), no.Β 1, 93β105. MR**512658**, DOI 10.1016/0362-546X(78)90045-7 - William Simons,
*Disconjugacy criteria for systems of self-adjoint differential equations*, J. London Math. Soc. (2)**6**(1973), 373β381. MR**316824**, DOI 10.1112/jlms/s2-6.2.373 - C. A. Swanson,
*Oscillatory criteria for nonlinear matrix differential inequalities*, Proc. Amer. Math. Soc.**24**(1970), 824β827. MR**259248**, DOI 10.1090/S0002-9939-1970-0259248-2 - E. C. Tomastik,
*Oscillation of nonlinear matrix differential equations of second order*, Proc. Amer. Math. Soc.**19**(1968), 1427β1431. MR**232046**, DOI 10.1090/S0002-9939-1968-0232046-2 - E. C. Tomastik,
*Oscillation of systems of second order differential equations*, J. Differential Equations**9**(1971), 436β442. MR**274863**, DOI 10.1016/0022-0396(71)90016-7 - Aurel Wintner,
*A criterion of oscillatory stability*, Quart. Appl. Math.**7**(1949), 115β117. MR**28499**, DOI 10.1090/S0033-569X-1949-28499-6

*Sturmian theory for a class of nonselfadjoint differential systems*(to appear).

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**71**(1978), 247-252 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486792-2
- MathSciNet review: 0486792