Locally closedness of unbounded derivations in $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Shôichi Ôta
- Proc. Amer. Math. Soc. 71 (1978), 222-226
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487474-3
- PDF | Request permission
Abstract:
We study a local property of unbounded derivations in ${C^ \ast }$-algebras, introducing locally closedness for derivations. We show that a derivation is locally closed and the positive portion of the domain is closed under the square root operation if and only if for each hermitian element a in the domain the ${C^ \ast }$-subalgebra generated by a and the identity is contained in the domain.References
- H. Behncke and J. Cuntz, Local completeness of operator algebras, Proc. Amer. Math. Soc. 62 (1976), no. 1, 95–100 (1977). MR 428048, DOI 10.1090/S0002-9939-1977-0428048-9
- Ola Bratteli and Derek W. Robinson, Unbounded derivations of $C^{\ast }$-algebras, Comm. Math. Phys. 42 (1975), 253–268. MR 377526, DOI 10.1007/BF01608976
- Ola Bratteli and Derek W. Robinson, Unbounded derivations of $C^{\ast }$-algebras. II, Comm. Math. Phys. 46 (1976), no. 1, 11–30. MR 390785, DOI 10.1007/BF01610496 D. P. Chi, Derivations in ${C^\ast }$-algebras (preprint). N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- Y. Katznelson, Sur les algèbres dont les éléments non négatifs admettent des racines carrées, Ann. Sci. École Norm. Sup. (3) 77 (1960), 167–174 (French). MR 0121669, DOI 10.24033/asens.1090
- Shôichi Ôta, On a representation of a $C^*$-algebra in a Lorentz algebra, Acta Sci. Math. (Szeged) 39 (1977), no. 1-2, 129–133. MR 440377 —, Certain operator algebras induced by $^ \ast$-derivations in ${C^ \ast }$-algebras on an indefinite inner product space, J. Functional Analysis (to appear).
- Robert T. Powers and Shôichirô Sakai, Unbounded derivations in operator algebras, J. Functional Analysis 19 (1975), 81–95. MR 0383093, DOI 10.1016/0022-1236(75)90007-5
- Shôichirô Sakai, On one-parameter subgroups of $^*$-automorphisms on operator algebras and the corresponding unbounded derivations, Amer. J. Math. 98 (1976), no. 2, 427–440. MR 412824, DOI 10.2307/2373896
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 222-226
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0487474-3
- MathSciNet review: 0487474