On A. Hurwitz’ method in isoperimetric inequalities
HTML articles powered by AMS MathViewer
- by Isaac Chavel
- Proc. Amer. Math. Soc. 71 (1978), 275-279
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493885-2
- PDF | Request permission
Abstract:
We show that if M is complete simply connected with nonpositive sectional curvatures, $\Omega$ a minimal submanifold of M with connected suitably oriented boundary $\Gamma$ then ${\lambda ^{1/2}}V/A \leqslant {(n - 1)^{1/2}}/n$ where V is the volume of $\Omega$, A the volume of $\Gamma ,\lambda$ the first nonzero eigenvalue of the Laplacian of $\Gamma$, and $n( \geqslant 2)$ is the dimension of $\Omega$.References
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Torsten Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154–160 (German). MR 1544458, DOI 10.1007/BF01378342
- Isaac Chavel and Edgar A. Feldman, Isoperimetric inequalities on curved surfaces, Adv. in Math. 37 (1980), no. 2, 83–98. MR 591721, DOI 10.1016/0001-8708(80)90028-6 R. E. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962.
- David Hoffman and Joel Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715–727. MR 365424, DOI 10.1002/cpa.3160270601
- Chuan-chih Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. (2) 73 (1961), 213–220. MR 130637, DOI 10.2307/1970287 A. Hurwitz, Sur le problème des isopérimètres, C. R. Acad. Sci. Paris 132 (1901), 401-403. J. H. Jellet, Sur la surface dont la courbure moyenne est constante, J. Math. Pure Appl. 18 (1853), 163-167.
- William T. Reid, The isoperimetric inequality and associated boundary problems, J. Math. Mech. 8 (1959), 897–905. MR 0130623, DOI 10.1512/iumj.1959.8.58057
- Robert C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525–533. MR 482597, DOI 10.1007/BF02567385
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Tsunero Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385. MR 198393, DOI 10.2969/jmsj/01840380
- H. F. Weinberger, An isoperimetric inequality for the $N$-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636. MR 79286, DOI 10.1512/iumj.1956.5.55021
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 275-279
- MSC: Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493885-2
- MathSciNet review: 0493885