RESOLUTIONS OF H-CLOSED SPACES

LOUIS M. FRIEDLER

ABSTRACT. It is shown that every Hausdorff space X is the perfect, irreducible, continuous image of a Hausdorff space \tilde{X} which has a basis with open closures. Further, $w(\tilde{X}) < w(X)$, where $w(\tilde{X})$ represents the weight of X, and if X is H-closed then \tilde{X} is also H-closed. A corollary of this result is that if $f: X \to Y$ is a continuous map of the H-closed space X onto the semi-regular Hausdorff space Y, then $w(Y) < w(X)$.

A Hausdorff space is H-closed if it is closed in every Hausdorff space in which it is embedded. A space is extremally disconnected if the closure of every open set is open. An extremally disconnected Hausdorff space \tilde{X} will be called a continuous or θ-continuous resolution of a space X if there is a function $f: \tilde{X} \to X$ which is continuous or θ-continuous respectively and also perfect, irreducible, and onto. (See [6] for the definition of θ-continuous.) $w(X)$ will denote the weight of a space X.

It is known that: (1) ([9] and [11]) every regular T_1 space X has a continuous resolution which is compact whenever X is; (2) [6] every Hausdorff space has a θ-continuous resolution which is compact whenever X is H-closed; (3) [8] every Hausdorff space is the continuous image of an extremally disconnected Hausdorff space which is H-closed whenever X is. It follows from the result of V. Ponomarev [9, Theorem 1] that for a space X, the weight of the resolution in (1), (2), or (3) above is less than or equal to $2^{2w(X)}$. Further, Ponomarev proved that this is the best possible estimate.

The purpose of this note is to show that by a slight weakening of the extremal disconnectedness of the pre-image, it is possible to obtain a much better control on its weight. A corollary of the main result is that if $g: X \to Y$ is a continuous map of the H-closed space X onto the semiregular Hausdorff space Y, then $w(Y) < w(X)$.

Definitions. A function $f: X \to Y$ is semi-open [7] if $\text{int} f(U)$ is nonempty whenever U is a nonempty open subset of X. A function $f: X \to Y$ is irreducible if f is onto and for no proper closed subset F of X is $f(F) = Y$. Note that "irreducible" has a slightly different meaning in [8].

Received by the editors October 5, 1976 and, in revised form, February 6, 1978.

© American Mathematical Society 1978

309
Lemma 1. Let $f : X \to Y$ be a closed, irreducible, and onto map. Then f is semi-open.

Proof. Let U be a nonempty open subset of X. Then $X - U$ is a proper closed subset, hence $f(X - U) \neq Y$ and $Y - f(X - U)$ is a nonempty open subset of $f(U)$.

Lemma 2. Let V be an open subset of the Hausdorff space Y, let X be the disjoint union of $\text{Cl}_Y(Y - \text{Cl}_Y V)$ and $\text{Cl}_Y V$, and let f be the natural map of X onto Y. Then f is perfect, irreducible, semi-open, continuous and onto, and X is H-closed whenever Y is H-closed.

Proof. It is easily verified that f is perfect, irreducible, continuous and onto and Lemma 1 implies that f is semi-open. If Y is H-closed, both $\text{Cl}_Y V$ and $\text{Cl}_Y(Y - \text{Cl}_Y V)$ are the closures of open subsets of Y, and hence H-closed [1, Theorem 3.3]. Then X, as the disjoint union of two H-closed spaces, is also H-closed.

In the sequel we may refer to V as a subset of X as well as of Y.

Lemma 3. If $f : X \to Y$ is a semi-open, onto, continuous map and $\text{Cl}_Y V$ is open in Y, then $f^{-1}(\text{Cl}_Y V) = \text{Cl}_X f^{-1}(V)$.

Proof. The inclusion $\text{Cl}_X f^{-1}(\text{Cl}_Y V) \subset f^{-1}(\text{Cl}_Y V)$ follows from continuity, so let $x \in f^{-1}(\text{Cl}_Y V)$ and let U be a neighborhood of x. Then $f(x) \in \text{Cl}_Y V$, which is open. By continuity, x has a neighborhood $U' \subset U$ such that $f(U') \subset \text{Cl}_Y V$.

Since f is semi-open, $\text{int} f(U') \neq \emptyset$. But if $\text{int} f(U') \cap \text{Cl}_Y V \neq \emptyset$, then $\text{int} f(U') \cap V \neq \emptyset$. If $y \in \text{int} f(U') \cap V$ and $z \in f^{-1}(y) \cap U'$, then $z \in U \cap f^{-1}(V)$ so that $x \in \text{Cl}_X f^{-1}(V)$.

Corollary. If $f : X \to Y$ is semi-open, continuous and onto and Y is extremally disconnected, then $f^{-1}(\text{Cl}_Y V) = \text{Cl}_X f^{-1}(V)$ for every open subset V of Y.

Maps such that $f^{-1}(\text{Cl}_Y V) = \text{Cl}_X f^{-1}(V)$ for every open subset V were studied in [4].

The proof of the next lemma is routine.

Lemma 4. Let $\{X_\alpha; f_\beta^\alpha\}$ be an inverse system with each bonding map closed, irreducible, and onto and each projection closed and onto. Then each projection is irreducible (and hence semi-open by Lemma 1).

Theorem. Every Hausdorff space X is the continuous, perfect, irreducible, semi-open image of a Hausdorff space \bar{X} which has a basis with open closures. Further, $w(\bar{X}) < w(X)$, and if X is H-closed then \bar{X} is H-closed.

Proof. Let $\bar{\mathcal{T}}$ be the initial ordinal of cardinality $w(X)$ and by [4, Lemma 2.1] let σ be a one-to-one function from $[0, \bar{\mathcal{T}}] \times [0, \bar{\mathcal{T}}]$ onto $[1, \bar{\mathcal{T}}]$ such that for each pair (α, β), $\sigma(\alpha, \beta) > \alpha$. We define an inverse system $\{X_\beta; f_\beta^\alpha\}$, $\alpha < \beta < \bar{\mathcal{T}}$ such that for each $\beta < \bar{\mathcal{T}}$, $w(X_\beta) < w(X)$. For each $\beta < \bar{\mathcal{T}}$ we
shall pick a basis \(\{ U_\gamma : \gamma < \bar{\gamma} \} \) for \(X_\beta \) and shall assume that \(f_\beta^\beta \) is the identity mapping on \(X_\beta \).

Let \(X_0 = X \) and choose a base \(\{ U_\gamma : \gamma \in [0, \bar{\gamma}) \} \) for \(X_0 \). For each \(\beta < \bar{\gamma} \), let \(Z_\beta \) denote the inverse limit of the system \(\{ X_\alpha ; /_\alpha \} \), \(\gamma < \alpha < \beta \), and for each \(\alpha < \beta \), let \(\phi_\alpha^\beta \) denote the projection from \(Z_\beta \) into \(X_\alpha \). If \(\alpha^{-1}(\beta) = (\lambda, \eta) \), then \(\beta > \lambda \) so \(U_\eta \) has already been defined. Let \(V_\beta = (\phi_\lambda^\beta)^{-1}(U_\eta) \) and let \(X_\beta \) be the disjoint union of \(\text{Cl}_{X_\alpha} V \) and \(\text{Cl}_{Z_\lambda}(Z_\beta - \text{Cl}_{Z_\lambda} V_\beta) \). Let \(p_\beta \) be the projection of \(X_\beta \) onto \(Z_\beta \) and for each \(\alpha \) less than \(\beta \), let \(f_\alpha^\beta = f_\alpha^\beta \circ p_\beta \). Clearly, for \(0 < \alpha < \gamma < \beta \), \(f_\alpha^\beta = f_\alpha^\beta \circ /_\alpha \). From [4, Lemma 2.2] it follows that \(w(X_\beta) < w(X_\gamma) \), so choose a base \(\{ U_\gamma : \gamma \in [0, \bar{\gamma}) \} \) for \(X_\beta \).

Let \(\tilde{X} \) denote the inverse limit of \(\{ (X_\alpha, f_\alpha^\beta) : \alpha < \beta < \bar{\gamma} \} \). By [4, Lemma 2.2], \(w(X) = w(\tilde{X}) \).

If, for each \(\alpha < \beta \), each bonding map \(f_\alpha^\beta \) (\(\alpha > \gamma \)) is perfect, irreducible, semi-open, onto, and continuous, then [4, Lemma 2.5] and Lemma 4 imply that \(Z_\beta \) is nonempty and each projection \(\phi_\alpha^\beta : Z_\beta \to X_\alpha \) is perfect, irreducible, semi-open, onto and continuous. Again, by [4, Lemma 2.5] and Lemmas 2 and 4, \(\tilde{X} \) is nonempty and each projection \(f_\beta : \tilde{X} \to X_\beta \) is perfect, irreducible, semi-open, onto, and continuous. Let \(f = f_0 \) be the map from \(\tilde{X} \) onto \(X \). As a subspace of a product of Hausdorff spaces, \(\tilde{X} \) is Hausdorff.

Let \(U \) be a neighborhood of \(x \in \tilde{X} \). It follows from the construction that \(x \in f_\beta^{-1}(V_\beta) \subseteq U \) for some \(\beta < \bar{\gamma} \). Since each projection is semi-open, onto, and continuous and \(\text{Cl}_{X_\alpha}(V_\beta) \) is open in \(X_\beta \), Lemma 3 implies that \(\text{Cl}_{\tilde{X}} f_\beta^{-1}(V_\beta) = f_\beta^{-1}(\text{Cl}_{X_\alpha} V_\beta) \). Hence, \((f_\beta^{-1}(V_\beta) : \beta < \bar{\gamma}) \) is a basis for \(\tilde{X} \) and every member has an open closure.

Finally, if each \(X_\alpha \) (\(\alpha < \beta \)) is H-closed, then since each \(f_\alpha^\alpha \) and each \(\phi_\alpha^\beta \) is semi-open and onto, it follows from [7, Theorem 3.7] that each \(Z_\beta \) is H-closed and from Lemma 2 that each \(X_\beta \) is H-closed. Again by [7, Theorem 3.7], \(\tilde{X} \) is H-closed.

Corollary. Let \(g : X \to Y \) be a continuous map of an H-closed space \(X \) onto a semiregular, Hausdorff space \(Y \). Then \(w(Y) \leq w(X) \).

Proof. Let \(\tilde{X} \) be the space constructed in Theorem 1 and let \(f \) be the map from \(\tilde{X} \) onto \(X \). By Theorem 1, \(\tilde{X} \) has a base of cardinality \(w(X) \). Consider \(F = g \circ f : \tilde{X} \to Y \). Since \(\tilde{X} \) is H-closed, \(F^{-1}(y) \) is H-closed for every \(y \in Y \) [12, Theorem 1.4]. Let \(\{ U_\alpha \} \) be a base for \(\tilde{X} \) of cardinality \(w(X) \) and such that each member has an open closure. If \(\{ V_\alpha \} \) is the collection of all finite unions of closures of members of \(\{ U_\alpha \} \), then each \(V_\alpha \), and hence each \(\tilde{X} - V_\alpha \), is clopen and so H-closed. Thus, \(F(\tilde{X} - V_\alpha) \) is closed in \(Y \) for each \(\alpha \). For each \(\alpha \) let \(W_\alpha = Y - F(\tilde{X} - V_\alpha) \) and let \(y \in W_\alpha \), an open subset of \(Y \). If \(V \) is a regularly open neighborhood of \(y \) contained in \(W_\alpha \), then \(F^{-1}(y) \subseteq F^{-1}(V) \), so that by the covering characterization of H-closed spaces, \(F^{-1}(y) \subseteq V_\alpha \subseteq \text{Cl} F^{-1}(V) \) for some \(\alpha \). It follows that \(y \in W_\alpha = \text{int} W_\alpha \subseteq \text{int} \text{Cl} V = V \subseteq W_\alpha \), and hence \(\{ W_\alpha \} \) is a base for \(Y \) of cardinality \(w(X) \). But then \(w(Y) \leq w(X) \).
Remarks. It follows from [9, Theorem 1] that the absolute of the closed unit interval is not second countable. (See [6] for the definition of absolute.) This fact, together with [8, Theorem 3.4] and the preceding corollary imply the following.

Proposition. No second countable, extremally disconnected H-closed space can be mapped onto the closed unit interval by an irreducible, closed continuous mapping.

Bibliography

CNA Insurance, CNA Plaza-38S, Chicago, Illinois 60685