A note on stable equivalence and Nakayama algebras
HTML articles powered by AMS MathViewer
- by Idun Reiten
- Proc. Amer. Math. Soc. 71 (1978), 157-163
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500481-7
- PDF | Request permission
Abstract:
Two artin algebras $\Lambda$ and $\Lambda ’$ are said to be stably equivalent if the categories of finitely generated modules modulo projective for $\Lambda$ and $\Lambda ’$ are equivalent categories. If $\Lambda ’$ is stably equivalent to a Nakayama (i.e. generalized uniserial) algebra $\Lambda$, we prove that $\Lambda$ and $\Lambda ’$ have the same number of nonprojective simple modules. And if $\Lambda$ and $\Lambda ’$ are stably equivalent indecomposable Nakayama algebras where each indecomposable projective module has length at least 3, then $\Lambda$ and $\Lambda ’$ have the same admissible sequences.References
- Maurice Auslander and Idun Reiten, Stable equivalence of Artin algebras, Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972) Lecture Notes in Math., Vol. 353, Springer, Berlin, 1973, pp. 8–71. MR 0335575
- Maurice Auslander and Idun Reiten, Stable equivalence of dualizing $R$-varieties. V. Artin algebras stably equivalent to hereditary algebras, Advances in Math. 17 (1975), no. 2, 167–195. MR 404243, DOI 10.1016/0001-8708(75)90091-2
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. IV. Invariants given by almost split sequences, Comm. Algebra 5 (1977), no. 5, 443–518. MR 439881, DOI 10.1080/00927877708822180
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. V. Methods for computing almost split sequences and irreducible morphisms, Comm. Algebra 5 (1977), no. 5, 519–554. MR 439882, DOI 10.1080/00927877708822181
- Kent R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248–260. MR 232795, DOI 10.1007/BF01110273
- K. R. Fuller, J. Haack, and H. Hullinger, Stable equivalence of uniserial rings, Proc. Amer. Math. Soc. 68 (1978), no. 2, 153–158. MR 463231, DOI 10.1090/S0002-9939-1978-0463231-9
- J. A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc. 17 (1974), 197–213. Collection of articles dedicated to the memory of Hanna Neumann, VI. MR 0349830
- Herbert Kupisch, Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, J. Reine Angew. Math. 201 (1959), 100–112 (German). MR 104707, DOI 10.1515/crll.1959.201.100
- Idun Reiten, Stable equivalence of dualizing $R$-varieties. VI. Nakayama dualizing $R$-varieties, Advances in Math. 17 (1975), no. 2, 196–211. MR 404244, DOI 10.1016/0001-8708(75)90092-4
- Idun Reiten, Correction to: “Stable equivalence of dualizing $R$-varieties. VI. Nakayama dualizing $R$-varieties” (Advances in Math. 17 (1975), no. 2, 196–211), Advances in Math. 23 (1977), no. 2, 211–212. MR 429983, DOI 10.1016/0001-8708(77)90121-9
- Idun Reiten, Almost split sequences for group algebras of finite representation type, Trans. Amer. Math. Soc. 233 (1977), 125–136. MR 573041, DOI 10.1090/S0002-9947-1977-0573041-3 —, Algebras stably equivalent to Nakayama algebras of Loewy length at most 4, Austral. Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 157-163
- MSC: Primary 16A46; Secondary 16A35, 16A64
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500481-7
- MathSciNet review: 500481