A generalization of Singer’s theorem
HTML articles powered by AMS MathViewer
- by Mark P. Hale and Dieter Jungnickel
- Proc. Amer. Math. Soc. 71 (1978), 280-284
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500494-5
- PDF | Request permission
Abstract:
Finite pappian Klingenberg planes and finite desarguesian uniform Hjelmslev planes admit abelian collineation groups acting regularly on the point and line sets; this generalizes Singer’s theorem on finite desarguesian projective planes.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algèbre commutative, Hermann, Paris, 1961.
- Arno Cronheim, Dual numbers, Witt vectors, and Hjelmslev planes, Geom. Dedicata 7 (1978), no. 3, 287–302. MR 505563, DOI 10.1007/BF00151527
- David A. Drake and Hanfried Lenz, Finite Klingenberg planes, Abh. Math. Sem. Univ. Hamburg 44 (1975), 70–83 (1976). MR 397535, DOI 10.1007/BF02992947
- Dieter Jungnickel, Regular Hjelmslev planes, J. Combin. Theory Ser. A 26 (1979), no. 1, 20–37. MR 525084, DOI 10.1016/0097-3165(79)90051-7
- Dieter Jungnickel, Regular Hjelmslev planes, J. Combin. Theory Ser. A 26 (1979), no. 1, 20–37. MR 525084, DOI 10.1016/0097-3165(79)90051-7
- Erwin Kleinfeld, Finite Hjelmslev planes, Illinois J. Math. 3 (1959), 403–407. MR 107209
- Wilhelm Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Z. 60 (1954), 384–406 (German). MR 65938, DOI 10.1007/BF01187385
- Wilhelm Klingenberg, Projektive Geometrien mit Homomorphismus, Math. Ann. 132 (1956), 180–200 (German). MR 83144, DOI 10.1007/BF01360182
- Heinz Lüneburg, Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe, Math. Z. 79 (1962), 260–288 (German). MR 138031, DOI 10.1007/BF01193123
- James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377–385. MR 1501951, DOI 10.1090/S0002-9947-1938-1501951-4
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 280-284
- MSC: Primary 50D35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500494-5
- MathSciNet review: 0500494