## Invariants and asymptotic behavior of solutions of a conservation law

HTML articles powered by AMS MathViewer

- by Tai Ping Liu PDF
- Proc. Amer. Math. Soc.
**71**(1978), 227-231 Request permission

## Abstract:

We study the asymptotic behavior of solutions of the initial value problem for a conservation law ${u_t} + f{(u)_x} = 0$. It is assumed that the initial data agrees with the Riemann data for $|x|$ large. We show that the solution approaches that of the corresponding Riemann problem at algebraic rates.## References

- Constantine M. Dafermos,
*Applications of the invariance principle for compact processes. II. Asymptotic behavior of solutions of a hyperbolic conservation law*, J. Differential Equations**11**(1972), 416–424. MR**296476**, DOI 10.1016/0022-0396(72)90055-1 - Ronald J. DiPerna,
*Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws*, Indiana Univ. Math. J.**24**(1974/75), no. 11, 1047–1071. MR**410110**, DOI 10.1512/iumj.1975.24.24088 - James Glimm and Peter D. Lax,
*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. MR**0265767** - J. M. Greenberg and Donald D. M. Tong,
*Decay of periodic solutions of $\partial u/\partial t+\partial f(u)/\partial x=0$*, J. Math. Anal. Appl.**43**(1973), 56–71. MR**320488**, DOI 10.1016/0022-247X(73)90257-6
B. Keyfitz, - P. D. Lax,
*Hyperbolic systems of conservation laws. II*, Comm. Pure Appl. Math.**10**(1957), 537–566. MR**93653**, DOI 10.1002/cpa.3160100406 - Peter D. Lax,
*Invariant functionals of nonlinear equations of evolution*, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 240–251. MR**0267254** - O. A. Oleĭnik,
*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation*, Uspehi Mat. Nauk**14**(1959), no. 2 (86), 165–170 (Russian). MR**0117408** - C. M. Dafermos,
*Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behaviour of solutions*, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, Res. Notes in Math., No. 17, Pitman, London, 1977, pp. 1–58. MR**0481581**

*Time-decreasing functionals of nonlinear conservation laws*, Ph.D. thesis, New York Univ., 1970.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**71**(1978), 227-231 - MSC: Primary 35L67
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500495-7
- MathSciNet review: 500495