A-THEORY AND A-HOMOLOGY RELATIVE TO A
\(\text{II}_\infty\)-FACTOR

IAIN RAEBURN

Abstract. Let \(X\) be a compact space and \(M\) be a factor of type \(\text{II}_\infty\) acting on a separable Hilbert space. Let \(K_M(X)\) denote the Grothendieck group generated by the semigroup of isomorphism classes of \(M\)-vector bundles over \(X\), and, if \(X\) is also metric, let \(\text{Ext}^M(X)\) denote the group of equivalence classes of extensions of \(C(X)\) relative to \(M\). We show that \(K_M(X)\) is the direct sum of the even-dimensional Čech cohomology groups of \(X\), and that \(\text{Ext}^M(X)\) is the direct product of the odd-dimensional Čech homology groups of \(X\).

Introduction. Recently Brown, Douglas, and Fillmore [8] have constructed a generalised homology theory called \(K\)-homology, which, in a sense made rigorous in [8], is dual to \(K\)-theory. Their construction is in terms of extensions of commutative \(C^*\)-algebras by the ideal of compact operators on a separable Hilbert space. Fillmore [12] and Cho [9] have investigated the analogous construction with the compact operators replaced by the closed two-sided ideal generated by the finite projections in a factor of type \(\text{II}_\infty\). They have constructed (see [9]) a generalised homology theory \(\{\text{Ext}^M\}\) on the category of compact metric spaces, which we shall call \(K\)-homology relative to the \(\text{II}_\infty\)-factor \(M\). In [6] Breuer has considered a theory of vector bundles relative to \(M\) and introduced a functor \(K_M\) which has topological properties like those of \(K\)-theory. We shall construct a generalised cohomology theory \(\{K_M^*\}\) (\(K\)-theory relative to \(M\)) from Breuer's functor, identify it in terms of the conventional \(K\)-functor and show that \(K_M(X)\) is the direct sum of the even-dimensional real cohomology of \(X\) for any compact space \(X\). Then we shall deduce the corresponding result for \(\text{Ext}^M\); namely that \(\text{Ext}^M(X)\) is the direct product of the odd-dimensional real homology of \(X\). We mention that the results in this note all follow in standard fashion from the recent literature; our goal is merely to point out some interesting consequences of the work of Breuer [6] and Cho [9]. Along the way we provide a proof of Proposition 2, which has been stated and used by Singer in [18].

First we set up some notation. Throughout, all topological spaces will be Hausdorff, and \(M\) will be a factor of type \(\text{II}_\infty\) acting on a separable Hilbert space \(H\). We shall denote by \(P_J(M)\) the set of finite projections of \(M\) and by \(\dim: P_J(M) \to \mathbb{R}^+\) the Murray-von Neumann dimension function of \(M\). For
details on such matters, we refer to [10]. In addition, we shall write \(\mathcal{K}(M) \) for the closed two-sided ideal of \(M \) generated by \(P_j(M) \), \(\mathcal{A}(M) \) for the quotient algebra \(M/\mathcal{K}(M) \) and \(\mathcal{S}(M) \) for the set of operators which are Fredholm relative to \(M \) (cf. [5]). Our terminology as regards \(K \)-theory will be that of [1]. By a generalised (Čech) cohomology theory on compact pairs, we shall mean a sequence \(\{K^n\} \) of contravariant functors which satisfy the three axioms of continuity, excision and exactness (cf. [20, §1]). We observe that continuous functors are necessarily homotopy invariant [20, Theorem 2.1], so that such theories satisfy the first six of the Eilenberg-Steenrod axioms. We shall need the following lemma.

Lemma. If \(\mu: \{H^n\} \to \{K^n\} \) is a natural transformation between generalised cohomology theories such that \(\mu: H^n(X) \to K^n(X) \) is an isomorphism for all \(n \) when \(X \) is a point, then \(\mu \) is a natural equivalence.

Proof. That \(\mu \) is an equivalence on compact polyhedra follows from the argument of [19, Theorem 4.8.10]. But every compact space is the inverse limit of spaces with the homotopy type of compact polyhedra [19, Lemma 6.6.7], and so the result holds on the category of compact spaces.

1. Let \(X \) be a compact space. Breuer [6] introduced the notion of an \(M \)-vector bundle over \(X \)--namely, a Hilbert space bundle over \(X \) whose transition functions take values in \(M \) and whose fibres are of the form \(E(H) \) for some \(E \) belonging to \(P_j(M) \). The set \(\text{Vect}_M(X) \) of \(M \)-isomorphism classes of \(M \)-vector bundles over \(X \) is a semigroup under direct sum; if \(f \) is a continuous map from \(Y \) to \(X \), then \(f \) induces (via pull-back of bundles) a semigroup homomorphism \(f^*: \text{Vect}_M(X) \to \text{Vect}_M(Y) \). If we denote the Grothendieck group of \(\text{Vect}_M(X) \) by \(K_M(X) \), then \(K_M \) is a contravariant functor from compact spaces to abelian groups. If \(X \) is a compact space with distinguished base point \(x_0 \) and \(\iota: \{x_0\} \to X \) is the inclusion, then we write \(K_M(X) \) for the kernel of the map \(i^*: K_M(X) \to K_M(\{x_0\}) \). Breuer proved that \(K_M \) is homotopy invariant, and that \(K_M(X) \) is a module over the ring \(K(X) \); it is easy to check from the definition [6, p. 417] that this module action is natural. The main result of Breuer’s article is the periodicity theorem for \(K_M \); namely that for any locally compact space \(X \), \(K_M(\mathbb{R}^2 \times X) \cong K_M(X) \), where for \(Y \) locally compact \(K_M(Y) \) stands for the reduced group \(\tilde{K}_M(Y \cup \{\infty\}) \) of the one point compactification of \(Y \). This isomorphism is natural since the inverse \(\beta_X \) is defined in terms of the module action.

We define \(K_M^n(X) = K_M(\mathbb{R}^n \times X) \) (for \(n > 0 \)) and, inductively, \(K_M^n(X) = K_M^{n-2}(X) \) for positive \(n \). If for a compact pair \((X, Y)\) we now set \(K_M^n(X, Y) = \tilde{K}_M^n(X/Y) \) (the base point is \(Y/Y \)) then \(\{K_M^n\} \) is a sequence of contravariant functors from compact pairs to abelian groups.

Proposition 1. \(\{K_M^n\} \) is a generalised cohomology theory on compact pairs.

Proof. That \(\{K_M^n\} \) satisfies excision is obvious. To verify continuity and exactness we shall use the theorem of Breuer that \(K_M(X) \cong [X, \mathcal{S}(M)] \) (see
[6, Theorem 1, p. 414]); an inspection of Breuer’s construction yields that the isomorphism is natural. Since \(\mathcal{T}(M) \) is an open set in the Banach space \(M \) ([5, II, Corollary 2 to Theorem 1]), \(\mathcal{T}(M) \) and its loop spaces \(\Omega^n \mathcal{T}(M) \) are ANR’s (cf. [14, Chapter 1]). It follows from the periodicity theorem that \(\pi_n(\mathcal{T}(M)) \cong \pi_n(\Omega^n \mathcal{T}(M)) \) for every \(n > 0 \), and so \(\mathcal{T}(M) \) and \(\Omega^n \mathcal{T}(M) \) are homotopy equivalent by [17, Theorem 15]. Thus \(\{K^n_M\} \) is given by a spectrum, and so by [21, §5] satisfies the exactness axiom on finite complexes. We can deduce that \(K_M \) is continuous from the fact that \(\mathcal{T}(M) \) is an ANR, and the result follows.

If \(X \) is a compact space, \(r \in \mathbb{R}^+ \) and \(E \in P_f(M) \) satisfies \(\dim E = r \), then, as in the construction of the module action [6, p. 417], there is a map \(\lambda_r: \text{Vect}(X) \to \text{Vect}_M(X) \) given by \(\lambda_r(a) = a \otimes (X \times E(H)) \). Thus there is a pairing \((a, r) \to \lambda_r(a): \text{Vect}(X) \otimes \mathbb{R}^+ \to \text{Vect}_M(X) \) which induces a natural transformation \(K(\cdot) \otimes \mathbb{R} \to K_M(\cdot) \). We observe that \(\lambda: K(X) \otimes \mathbb{R} \to K_M(X) \) is an isomorphism when \(X \) is a one point space.

Proposition 2 (Singer). The functors \(K(\cdot) \otimes \mathbb{R} \) and \(K_M(\cdot) \) are naturally equivalent (via \(\lambda \)) on the category of compact spaces. In particular, \(K_M(\cdot) \) is independent of the factor \(M \).

Proof. The functors \(K^* \) form a generalised cohomology theory, and this implies that \(K^*(\cdot) \otimes \mathbb{R} \) do also. For clearly \(K^n(\cdot) \otimes \mathbb{R} \) is a sequence of contravariant functors satisfying the excision axiom; the exactness axiom for \(K(\cdot) \otimes \mathbb{R} \) follows since \(\mathbb{R} \) is torsion-free and the continuity axiom follows since tensoring with \(\mathbb{R} \) commutes with direct limits [3, pp. 33–34]. Let \(X \) be a compact space and let \(\text{Per}: K(X) \to K(\mathbb{R}^2 \times X) \) and \(\text{Per}_M: K_M(X) \to K_M(\mathbb{R}^2 \times X) \) denote the periodicity maps of \(K \)-theory and \(K_M \)-theory respectively. Then \(\text{Per} \) is given by taking the external product with the Bott element \(b \in K(\mathbb{R}^2) \) [4, p. 118], and \(\text{Per}_M \) is the analogous external product for \(K_M \)-theory with the same element \(b \in K(\mathbb{R}^2) \) [6, p. 426]. It follows from elementary properties of the external product (cf. [6, §4.11]) that the diagram

\[
K(X) \otimes \mathbb{R} \xrightarrow{\text{Per} \otimes \text{id}} K(\mathbb{R}^2 \times X) \otimes \mathbb{R}
\]

commutes. Hence \(\lambda \) can be extended to give a natural transformation between the generalised cohomology theories \(K^*(\cdot) \otimes \mathbb{R} \) and \(K_M^*(\cdot) \). As observed above \(\lambda: K^n(\text{pt}) \otimes \mathbb{R} \to K^n_M(\text{pt}) \) is an isomorphism when \(n = 0 \); since every \(M \)-vector bundle on \(S^1 \) is trivial [6, Corollary 2, p. 404] it is also an isomorphism for \(n = -1 \), and it follows that \(\lambda \) is an isomorphism for all \(n \in \mathbb{Z} \). The results now follow from the lemma in the introduction.

It is a standard result in \(K \)-theory that for a compact space \(X \), \(K(X) \otimes \mathbb{R} \) is the direct sum of all the groups \(H^p(X; \mathbb{R}) \) for \(p \) even, where \(H^p(X; \mathbb{R}) \) denotes the \(p \)th Čech cohomology group of \(X \) with real coefficients. (This is a consequence of [2, p. 19] and the universal coefficient theorem. A more
elementary proof is contained in [1, §3.2]; here, however, we have to invoke
the Eilenberg-Steenrod uniqueness theorem to deduce that the \(H^p \)'s are in
fact Čech cohomology.) It now follows immediately from Proposition 2 that:

Corollary 3. For any compact space \(X \) there is a natural isomorphism

\[
K_M(X) \cong \bigoplus \{ H^p(X; \mathbb{R}) : p \text{ even}, p > 0 \}.
\]

2. Let \(X \) be a compact metric space. An extension of \(C(X) \) relative to \(M \) is
a unital *-monomorphism \(\tau: C(X) \to \mathcal{A}(M) \). Two such extensions \(\tau_1, \tau_2 \) are
equivalent if there is an inner automorphism \(\alpha \) of \(M \) (which maps \(\mathcal{K}(M) \) onto
\(\mathcal{K}(M) \) and so induces an automorphism \(\alpha \) of \(\mathcal{A}(M) \)) with \(\tau_2 = \alpha \circ \tau_1 \). The set
\(\text{Ext}^M(X) \) of equivalence classes of extensions of \(C(X) \) relative to \(M \) is a
group (see [12]), is a homotopy invariant functor of the space \(X \) and can be
used to define a generalised homology theory (see [9]). Cho also proves in [9]
that \(\text{Ext}^M \) is naturally equivalent to \(\text{Hom}(\mathcal{K}(\mathcal{S}(\cdot)), \mathbb{R}) \)--and so is independent
of \(M \).

Proposition 4. For any compact metric space \(X \) there is a natural
isomorphism

\[
\text{Ext}^M(X) \cong \prod \{ H_p(X; \mathbb{R}) : p \text{ odd}, p \geq 1 \}
\]

where \(H_p(X, \mathbb{R}) \) denotes the \(p \)th Čech homology group of \(X \) with real
coefficients.

Proof. First we suppose that \(X \) is a compact polyhedron. By the main
theorem of [9], \(\text{Ext}^M(X) \cong \text{Hom}(\mathcal{K}(SX); \mathbb{R}) \) where \(SX \) denotes the unre-
duced suspension of \(X \). This in turn can be identified with
\(\text{Hom}_{\mathbb{R}}(\mathcal{K}(SX) \otimes \mathbb{Z}, \mathbb{R}) \), which is isomorphic to \(\text{Hom}_{\mathbb{R}}(\mathbb{Z} \oplus \bigoplus_p \text{H}^p(SX; \mathbb{R}), \mathbb{R}) \)
by Corollary 3. Since \(X \) is a compact polyhedron \(\text{Hom}(\mathcal{H}^p(SX); \mathbb{R}) \cong
\mathcal{H}_p(SX) \) [13, 23.14] and so \(\text{Ext}^M(X) \cong \prod_p \text{H}_p(SX; \mathbb{R}) \). But \(\mathcal{H}_p(SX) \cong
\text{H}_{p-1}(X) \), and we have the result for compact polyhedra. The general case
now follows by observing that both \(\text{Ext}^M \) and \(\prod \text{H}_p(\cdot, \mathbb{R}) \) are continuous
functors [9, Corollary 1].

Remarks. Although the Čech homology theory \(H_\ast(\cdot, G) \) with coefficients
in an abelian group \(G \) satisfies the continuity axiom, it does not in general
have a long exact sequence; the appropriate theory for compact metric spaces
is Steenrod homology, denoted \(\ast H_\ast(\cdot, G) \). In addition to the seven Eilenberg-
Steenrod axioms, \(\ast H_\ast \) satisfies the relative homeomorphism axiom and the
cluster axiom (see [15] or [16]), and is characterised uniquely by these axioms
[16, Theorem 3]. For an arbitrary coefficient group Čech homology satisfies
all these axioms except exactness; however, when the coefficient group is \(\mathbb{R} \),
Čech homology is exact [11, Theorem IX.7.6] and so coincides with Steenrod
homology on compact metric spaces. Thus the last proposition is valid with the
Čech groups \(H_\ast(X; \mathbb{R}) \) replaced by the corresponding Steenrod groups.
For further details on the relationships between Čech and Steenrod homology we refer to [15] and [16]; the Čech theory is discussed in detail in [11].

In [9] Cho proves the Ext_* is a generalised Steenrod theory which is also continuous; hence Ext_# is also a generalised Čech theory. (Here by a generalised theory we mean one which satisfies all the appropriate axioms except dimension; the axioms for Čech homology are given in [11, Chapter X].) This is not the case for the Brown-Douglas-Fillmore theory Ext_*; it is a generalised Steenrod theory but is not continuous— in fact Brown [7] has shown that it fails to be continuous in the same way as the Steenrod homology theory. This is discussed in [15].

ACKNOWLEDGEMENT. The author would like to thank Peter Fillmore for some helpful comments.

REFERENCES

SCHOOL OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, P. O. BOX 1, KENSINGTON, N.S.W. 2033, AUSTRALIA