$K$-theory and $K$-homology relative to a $\textrm {II}_{\infty }$-factor
HTML articles powered by AMS MathViewer
- by Iain Raeburn
- Proc. Amer. Math. Soc. 71 (1978), 294-298
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500509-4
- PDF | Request permission
Abstract:
Let X be a compact space and M be a factor of type $\mathrm {II}_\infty$ acting on a separable Hilbert space. Let ${K_M}(X)$ denote the Grothendieck group generated by the semigroup of isomorphism classes of M-vector bundles over X, and, if X is also metric, let $\operatorname {Ext}^M(X)$ denote the group of equivalence classes of extensions of $C(X)$ relative to M. We show that ${K_M}(X)$ is the direct sum of the even-dimensional Čech cohomology groups of X, and that $\operatorname {Ext}^M(X)$ is the direct product of the odd-dimensional Čech homology groups of X.References
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- M. F. Atiyah, Algebraic topology and operators in Hilbert space, Lectures in Modern Analysis and Applications, I, Springer, Berlin, 1969, pp. 101–121. MR 0248803
- Manfred Breuer, Fredholm theories in von Neumann algebras. I, Math. Ann. 178 (1968), 243–254. MR 234294, DOI 10.1007/BF01350663
- Manfred Breuer, Theory of Fredholm operators and vector bundles relative to a von Neumann algebra, Rocky Mountain J. Math. 3 (1973), 383–429. MR 377530, DOI 10.1216/RMJ-1973-3-3-383
- Lawrence G. Brown, Operator algebras and algebraic $K$-theory, Bull. Amer. Math. Soc. 81 (1975), no. 6, 1119–1121. MR 383090, DOI 10.1090/S0002-9904-1975-13943-7
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Sung Je Cho, Extensions relative to a $\textrm {II}_{\infty }$-factor, Proc. Amer. Math. Soc. 74 (1979), no. 1, 109–112. MR 521882, DOI 10.1090/S0002-9939-1979-0521882-8
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR 0352996
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886, DOI 10.1515/9781400877492
- P. A. Fillmore, Extensions relative to semifinite factors, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975) Academic Press, London, 1976, pp. 487–496. MR 0450989
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0215295
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Jerome Kaminker and Claude Schochet, $K$-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. 227 (1977), 63–107. MR 431136, DOI 10.1090/S0002-9947-1977-0431136-9 J. Milnor, On the Steenrod homology theory, mimeographed notes.
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- I. M. Singer, Some remarks on operator theory and index theory, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977, pp. 128–138. MR 0467848
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- J. L. Taylor, Banach algebras and topology, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973) Academic Press, London, 1975, pp. 118–186. MR 0417789
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227–283. MR 137117, DOI 10.1090/S0002-9947-1962-0137117-6
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 294-298
- MSC: Primary 55N15; Secondary 46L99, 46M20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500509-4
- MathSciNet review: 500509