Alternating basis exchanges in matroids
HTML articles powered by AMS MathViewer
- by Joseph P. S. Kung
- Proc. Amer. Math. Soc. 71 (1978), 355-358
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500521-5
- PDF | Request permission
Abstract:
We study some of the basis exchange properties for matroids implied by the following fact from linear algebra: an alternating multilinear k-form vanishes on any ordered set of k linearly dependent vectors.References
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
- Curtis Greene, Another exchange property for bases, Proc. Amer. Math. Soc. 46 (1974), 155–156. MR 345850, DOI 10.1090/S0002-9939-1974-0345850-X
- Curtis Greene and T. L. Magnanti, Some abstract pivot algorithms, SIAM J. Appl. Math. 29 (1975), no. 3, 530–539. MR 376401, DOI 10.1137/0129045
- Eugene L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York-Montreal, Que.-London, 1976. MR 0439106
- Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, DOI 10.2307/2371182
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 355-358
- MSC: Primary 05B35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0500521-5
- MathSciNet review: 500521