Partitions into chains of a class of partially ordered sets
HTML articles powered by AMS MathViewer
- by N. Metropolis, Gian-Carlo Rota, Volker Strehl and Neil White
- Proc. Amer. Math. Soc. 71 (1978), 193-196
- DOI: https://doi.org/10.1090/S0002-9939-1978-0551483-6
- PDF | Request permission
Abstract:
Let a cube of side k in ${{\mathbf {R}}^n}$ be dissected into ${k^n}$ unit cubes. The collection of all affine subspaces of ${{\mathbf {R}}^n}$ determined by the faces of the unit cubes forms a lattice $L(n,k)$ when ordered by inclusion. We explicitly construct a Dilworth partition into chains of $L(n,k)$.References
- N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193. MR 0043115
- R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, DOI 10.2307/1969503
- Curtis Greene and Daniel J. Kleitman, Proof techniques in the theory of finite sets, Studies in combinatorics, MAA Stud. Math., vol. 17, Math. Assoc. America, Washington, D.C., 1978, pp. 22–79. MR 513002 J. R. Griggs, Symmetric chain orders, Sperner theorems, and loop matchings, M.I.T. doctoral thesis, 1977.
- Gian-Carlo Rota and L. H. Harper, Matching theory, an introduction, Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 169–215. MR 0282855
- N. Metropolis and Gian-Carlo Rota, On the lattice of faces of the $n$-cube, Bull. Amer. Math. Soc. 84 (1978), no. 2, 284–286. MR 462997, DOI 10.1090/S0002-9904-1978-14477-2
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 71 (1978), 193-196
- MSC: Primary 06A10; Secondary 05B99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0551483-6
- MathSciNet review: 0551483