Homology equivalent finite groups are isomorphic
HTML articles powered by AMS MathViewer
- by Marc Culler
- Proc. Amer. Math. Soc. 72 (1978), 218-220
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486195-0
- PDF | Request permission
Abstract:
We prove that if a homomorphism between two finite groups induces an isomorphism between their integral homology groups then it is an isomorphism.References
- Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239. MR 137742, DOI 10.1090/S0002-9947-1961-0137742-1
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- Richard G. Swan, The nontriviality of the restriction map in the cohomology of groups, Proc. Amer. Math. Soc. 11 (1960), 885–887. MR 124050, DOI 10.1090/S0002-9939-1960-0124050-2
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 218-220
- MSC: Primary 20J05; Secondary 55H10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0486195-0
- MathSciNet review: 0486195