On Markov stability
HTML articles powered by AMS MathViewer
- by Corrado Risito
- Proc. Amer. Math. Soc. 72 (1978), 85-88
- DOI: https://doi.org/10.1090/S0002-9939-1978-0492632-8
- PDF | Request permission
Abstract:
The concept of T-stability for vector-valued functions is introduced—a generalization of strong stability in the sense of Markov. Moreover, for solutions of T-periodic systems of differential equations, T-stability is compared with Liapunov stability and it is shown that boundedness and T-stability imply asymptotic almost periodicity.References
- A. Markoff, Stabilität im Liapounoffschen Sinne und Fastperiodizität, Math. Z. 36 (1933), no. 1, 708–738 (German). MR 1545367, DOI 10.1007/BF01188645
- A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. MR 0460799
- Maurice Fréchet, Les fonctions asymptotiquement presque-périodiques, Revue Sci. (Rev. Rose Illus.) 79 (1941), 341–354 (French). MR 13242
- A. Halanay, Differential equations: Stability, oscillations, time lags, Academic Press, New York-London, 1966. MR 0216103
- T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic solutions, Applied Mathematical Sciences, Vol. 14, Springer-Verlag, New York-Heidelberg, 1975. MR 0466797
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 85-88
- MSC: Primary 34D99; Secondary 34C25
- DOI: https://doi.org/10.1090/S0002-9939-1978-0492632-8
- MathSciNet review: 0492632