Local $p$-Sidon sets for Lie groups
HTML articles powered by AMS MathViewer
- by A. H. Dooley and Paolo M. Soardi
- Proc. Amer. Math. Soc. 72 (1978), 125-126
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493179-5
- PDF | Request permission
Abstract:
It is shown that a compact Lie group admits no local p-Sidon sets of unbounded degree.References
- A. H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Functional Analysis 32 (1979), no. 2, 254–267. MR 534677, DOI 10.1016/0022-1236(79)90057-0
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- J. F. Price, Local Sidon sets and uniform convergence of Fourier series, Israel J. Math. 17 (1974), 169–175. MR 346427, DOI 10.1007/BF02882236 P. M. Soardi, $\mathcal {S}\;{\mathcal {U}_2}$ has no infinite local p-Sidon sets (preprint).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 125-126
- MSC: Primary 43A40
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493179-5
- MathSciNet review: 0493179