The Carathéodory extension theorem for vector valued measures

Author:
Joseph Kupka

Journal:
Proc. Amer. Math. Soc. **72** (1978), 57-61

MSC:
Primary 46G10; Secondary 28A45, 60H05

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493327-7

MathSciNet review:
0493327

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper comprises three advertisements for a known theorem which, the author believes, deserves the title of *the* Carathéodory extension theorem for vector valued premeasures. Principal among these is a short and transparent proof of Porcelli's criterion for the weak convergence of a sequence in the Banach space of bounded finitely additive complex measures defined on an arbitrary field, and equipped with the total variation norm. Also, a characterization of the so-called Carathéodory Extension Property is presented, and there is a brief discussion of the relevance of this material to stochastic integration.

**[1]**R. G. Bartle,*A general bilinear vector integral*, Studia Math.**15**(1956), 337–352. MR**0080721**, https://doi.org/10.4064/sm-15-3-337-352**[2]**James K. Brooks,*On the existence of a control measure for strongly bounded vector measures*, Bull. Amer. Math. Soc.**77**(1971), 999–1001. MR**0286971**, https://doi.org/10.1090/S0002-9904-1971-12834-3**[3]**James K. Brooks,*Weak compactness in the space of vector measures*, Bull. Amer. Math. Soc.**78**(1972), 284–287. MR**0324408**, https://doi.org/10.1090/S0002-9904-1972-12960-4**[4]**James K. Brooks and Robert S. Jewett,*On finitely additive vector measures*, Proc. Nat. Acad. Sci. U.S.A.**67**(1970), 1294–1298. MR**0269802****[5]**R. B. Darst,*A direct proof of Porcelli’s condition for weak convergence*, Proc. Amer. Math. Soc.**17**(1966), 1094–1096. MR**0206687**, https://doi.org/10.1090/S0002-9939-1966-0206687-0**[6]**J. Diestel,*Applications of weak compactness and bases to vector measures and vectorial integration*, Rev. Roumaine Math. Pures Appl.**18**(1973), 211–224. MR**0317042****[7]**Nelson Dunford and Jacob T. Schwartz,*Linear Operators. I. General Theory*, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR**0117523****[8]**Stelian Găină,*Extension of vector measures*, Rev. Math. Pures Appl.**8**(1963), 151–154. MR**0163998****[9]**Igor Kluvánek,*The extension and closure of vector measure*, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 175–190. MR**0335741****[10]**A. U. Kussmaul,*Stochastic integration and generalized martingales*, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1977. Research Notes in Mathematics, No. 11. MR**0488281****[11]**Michel Métivier,*Stochastic integral and vector valued measures*, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 283–296. MR**0331509****[12]**-,*The stochastic integral with respect to processes with values in a reflexive Banach space*, Theor. Probability Appl.**19**(1974), 758-787.**[13]**J. Pellaumail, Thèse, Rennes, France, 1972.**[14]**R. S. Phillips,*On weakly compact subsets of a Banach space*, Amer. J. Math.**65**(1943), 108–136. MR**0007938**, https://doi.org/10.2307/2371776**[15]**Pasquale Porcelli,*Two embedding theorems with applications to weak convergence and compactness in spaces of additive type functions*, J. Math. Mech.**9**(1960), 273–292. MR**0124723****[16]**Maurice Sion,*A theory of semigroup valued measures*, Lecture Notes in Mathematics, Vol. 355, Springer-Verlag, Berlin-New York, 1973. MR**0450503****[17]**Maurice Sion,*Outer measures with values in a topological group*, Proc. London Math. Soc. (3)**19**(1969), 89–106. MR**0239039**, https://doi.org/10.1112/plms/s3-19.1.89**[18]**T. Traynor,*𝑆-bounded additive set functions*, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 355–365. MR**0333115**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46G10,
28A45,
60H05

Retrieve articles in all journals with MSC: 46G10, 28A45, 60H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0493327-7

Keywords:
Vector valued premeasures,
weak convergence of measures,
Carathéodory Extension Property,
stochastic integration

Article copyright:
© Copyright 1978
American Mathematical Society