Resultant operators of a pair of analytic functions
HTML articles powered by AMS MathViewer
- by I. C. Gohberg and L. E. Lerer
- Proc. Amer. Math. Soc. 72 (1978), 65-73
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493487-8
- PDF | Request permission
Abstract:
The well-known results on resultant of polynomials and its continuous analogue is generalized for some classes of analytic functions.References
- I. Ts. Gokhberg and I. A. Fel′dman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0355674
- I. C. Gohberg and G. Haĭnig, The resultant matrix and its generalizations. I. The resultant operator for matrix polynomials, Acta Sci. Math. (Szeged) 37 (1975), 41–61 (Russian). MR 380471
- I. C. Gohberg and G. Haĭnig, The resultant matrix and its generalizations. II. The continual analogue of the resultant operator, Acta Math. Acad. Sci. Hungar. 28 (1976), no. 3-4, 189–209 (Russian). MR 425652, DOI 10.1007/BF01896778
- I. C. Gohberg and L. E. Lerer, Resultants of matrix polynomials, Bull. Amer. Math. Soc. 82 (1976), no. 4, 565–567. MR 407048, DOI 10.1090/S0002-9904-1976-14103-1
- M. G. Kreĭn, Integral equations on the half-line with a kernel depending on the difference of the arguments, Uspehi Mat. Nauk 13 (1958), no. 5 (83), 3–120 (Russian). MR 0102721
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 65-73
- MSC: Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0493487-8
- MathSciNet review: 0493487