Approximation of $L^{1}$-bounded martingales by martingales of bounded variation
HTML articles powered by AMS MathViewer
- by D. L. Burkholder and T. Shintani
- Proc. Amer. Math. Soc. 72 (1978), 166-169
- DOI: https://doi.org/10.1090/S0002-9939-1978-0494472-2
- PDF | Request permission
Abstract:
If $f = ({f_1},{f_2}, \ldots )$ is a real ${L^1}$-bounded martingale and $\varepsilon > 0$, then there is a martingale g of bounded variation satisfying ${\left \| {f - g} \right \|_1} < \varepsilon$. The same result holds for X-valued martingales, where X is a Banach space, provided X has the Radon-Nikodým property. In fact, this characterizes Banach spaces having the Radon-Nikodým property. Theorem 1 identifies, for an arbitrary Banach space, the class of ${L^1}$-bounded martingales that converge almost everywhere.References
- S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41. MR 246341, DOI 10.7146/math.scand.a-10868
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- R. M. Dudley, Wiener functionals as Itô integrals, Ann. Probability 5 (1977), no. 1, 140–141. MR 426151, DOI 10.1214/aop/1176995898
- H. P. McKean Jr., Stochastic integrals, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR 0247684
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 166-169
- MSC: Primary 60G45
- DOI: https://doi.org/10.1090/S0002-9939-1978-0494472-2
- MathSciNet review: 0494472