An ergodic theorem for Fréchet-valued random variables
HTML articles powered by AMS MathViewer
- by D. Landers and L. Rogge
- Proc. Amer. Math. Soc. 72 (1978), 49-53
- DOI: https://doi.org/10.1090/S0002-9939-1978-0501293-0
- PDF | Request permission
Abstract:
We generalize the classical ergodic theorem from real-valued random variables to Fréchet space-valued random variables and obtain this generalization as a direct corollary of the classical theorem. As an application we obtain several strong laws of large numbers for Fréchet-valued random variables. In a similar way we obtain a martingale theorem for Fréchet-valued random variables.References
- Michel Métivier, Reelle und vektorwertige Quasimartingale und die Theorie der stochastischen Integration, Lecture Notes in Mathematics, Vol. 607, Springer-Verlag, Berlin-New York, 1977 (German). MR 0651570, DOI 10.1007/BFb0069563
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
- W. J. Padgett and R. L. Taylor, Laws of large numbers for normed linear spaces and certain Fréchet spaces, Lecture Notes in Mathematics, Vol. 360, Springer-Verlag, Berlin-New York, 1973. MR 0426114, DOI 10.1007/BFb0069731
- F. W. Schäfke, Integrationstheorie. I, J. Reine Angew. Math. 244 (1970), 154–176 (German). MR 271300, DOI 10.1515/crll.1970.244.154
- F. W. Schäfke, Integrationstheorie. II, J. Reine Angew. Math. 248 (1971), 147–171 (German). MR 285687, DOI 10.1515/crll.1971.248.147
- F. W. Schäfke, Integrationstheorie und quasinormierte Gruppen, J. Reine Angew. Math. 253 (1972), 117–137 (German). MR 306440, DOI 10.1515/crll.1972.253.117
- R. L. Taylor and W. J. Padgett, Some laws of large numbers for normed linear spaces, Sankhyā Ser. A 36 (1974), no. 4, 359–368. MR 385986
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 49-53
- MSC: Primary 60F15; Secondary 28A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0501293-0
- MathSciNet review: 0501293