Convergence of certain cosine sums in a metric space — $L$
HTML articles powered by AMS MathViewer
- by Niranjan Singh and K. M. Sharma
- Proc. Amer. Math. Soc. 72 (1978), 117-120
- DOI: https://doi.org/10.1090/S0002-9939-1978-0503543-3
- PDF | Request permission
Abstract:
In this paper a generalization of a theorem of Garrett and Stanojevic [6] has been obtained.References
- S. Sidon, Hinreichende Bedingungen fur den Fourier-charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160.
- Otto Szász, Quasi-monotone series, Amer. J. Math. 70 (1948), 203–206. MR 22917, DOI 10.2307/2371946
- G. A. Fomin, On linear methods of summability of Fourier series, Mat. Sb. (N.S.) 65 (107) (1964), 144–152 (Russian). MR 0168988
- M. M. Robertson, A generalization of quasi-monotone sequences, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 37–41. MR 235338, DOI 10.1017/S0013091500012153 S. A. Teljakoviskii, Concerning a sufficient condition of Sidon for the integrability of trigonometric series, Math. Notes 14 (1973), 742-748. J. W. Garrett and C. V. Stanojevic, On L-convergence of certain cosine sums, Notices Amer. Math. Soc. 22 (1975), A-166.
- Maher M. H. Marzuq, $L$-convergence of certain cosine sums, J. Univ. Kuwait Sci. 2 (1975), 9–11 (English, with Arabic summary). MR 0425481
- John W. Garrett and Časlav V. Stanojević, On $L^{1}$ convergence of certain cosine sums, Bull. Amer. Math. Soc. 82 (1976), no. 1, 129–130. MR 394001, DOI 10.1090/S0002-9904-1976-13990-0
- Babu Ram, Convergence of certain cosine sums in the metric spaces $L$, Proc. Amer. Math. Soc. 66 (1977), no. 2, 258–260. MR 461013, DOI 10.1090/S0002-9939-1977-0461013-4
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 117-120
- MSC: Primary 42A20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0503543-3
- MathSciNet review: 503543