-regular embeddings of the plane

Authors:
F. R. Cohen and D. Handel

Journal:
Proc. Amer. Math. Soc. **72** (1978), 201-204

MSC:
Primary 57-XX

DOI:
https://doi.org/10.1090/S0002-9939-1978-0524347-1

MathSciNet review:
524347

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A map is said to be *k*-regular if whenever are distinct points of *X*, then are linearly independent. Such maps are of interest in the theory of Cebyšev approximation. In this paper, configuration spaces and homological methods are used to show that there does not exist a *k*-regular map of into where denotes the number of ones in the dyadic expansion of *k*. This result is best possible when *k* is a power of 2.

**[1]**V. G. Boltjanskiĭ, S. S. Ryškov, and Ju. A. Šaškin,*On 𝑘-regular imbeddings and on applications to theory of function approximation*, Uspehi Mat. Nauk**15**(1960), no. 6 (96), 125–132 (Russian). MR**0125567****[2]**K. Borsuk,*On the 𝑘-independent subsets of the Euclidean space and of the Hilbert space*, Bull. Acad. Polon. Sci. Cl. III.**5**(1957), 351–356, XXIX (English, with Russian summary). MR**0088710****[3]**F. R. Cohen,*The homology of*-*spaces*, , Lecture Notes in Math., no. 533, Springer-Verlag, Berlin and New York, 1976, pp. 207-351.**[4]**F. R. Cohen, M. E. Mahowald, and R. J. Milgram,*The stable decomposition for the double loop space of a sphere*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 225–228. MR**520543****[5]**David Handel and Jack Segal,*On 𝑘-regular embeddings of spaces in Euclidean space*, Fund. Math.**106**(1980), no. 3, 231–237. MR**584495**, https://doi.org/10.4064/fm-106-3-231-237**[6]**John C. Mairhuber,*On Haar’s theorem concerning Chebychev approximation problems having unique solutions*, Proc. Amer. Math. Soc.**7**(1956), 609–615. MR**0079672**, https://doi.org/10.1090/S0002-9939-1956-0079672-3**[7]**J. P. May,*The geometry of iterated loop spaces*, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. MR**0420610****[8]**Stewart Priddy,*Dyer-Lashof operations for the classifying spaces of certain matrix groups*, Quart. J. Math. Oxford Ser. (2)**26**(1975), no. 102, 179–193. MR**0375309**, https://doi.org/10.1093/qmath/26.1.179**[9]**Ivan Singer,*Best approximation in normed linear spaces by elements of linear subspaces*, Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. MR**0270044**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57-XX

Retrieve articles in all journals with MSC: 57-XX

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0524347-1

Keywords:
*k*-regular maps,
configuration spaces,
Dyer-Lashof operations,
Stiefel-Whitney classes

Article copyright:
© Copyright 1978
American Mathematical Society