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COHOMOLOGICAL TRIVIALITY BY SPECTRAL METHODS

JUAN JOSÉ MARTINEZ1

Abstract. In this note, the spectral sequence of a group extension is used to

obtain a direct proof of the twins' criterion for cohomological triviality of

modules over a finite group, stated in its strong form.

The Täte cohomology of finite groups is denoted by H, while H is reserved

for the ordinary group cohomology.

The criterion to be proved is the following.

Theorem (Nakayama-Tate). Let G be a finite group and A a G-module. If,

for each prime p, there exists an integer rp (depending on p) such that

Hr'(Sp,A) = Hr>+>(Sp,A) = 0,

where Sp is a Sylow p-subgroup of G, then A is cohomologically trivial.

Proof. As usual, by the Sylow subgroup argument in cohomology [3,

Corollary to Theorem 4, p. 148], it suffices to consider the case where G is a

/»-group, then showing that the G-module A is cohomologically trivial if

Hr(G, A) — Hr+1(G, A) = 0 for some integer r. This is an immediate

consequence of the following two statements:

(i) If Hr(G, A) = Hr+\G, A) = 0, then Hr(S, A) = Hr+\S, A) = 0 for

all subgroups S of G.

(ii) If Hr(G, A) = Hr+ \G, A) = 0, then H"(G, A) = 0 for all integers n.

Since every proper subgroup of G is contained in a normal subgroup of

index p in G, to establish (i) S can be taken as such a subgroup, arguing by

induction on the order of G. Also, by the standard technique of dimension

shifting [3, §1, p. 137], it can be assumed that r = 1.

Now, let (E, H) be the Hochschild-Serre spectral sequence associated with

the G-module A and the subgroup S of G [2], so that

££•" = H" (G/S, H" (S, A))   and   H" = H" (G, A).

Since Hl = 0, H1(S, A)G/S =^ El'1, G/S being a cyclic group. For applying

the formula resG5 corsc = NG/S [1, Corollary 9.2, p. 257] for dimension 1,

Nc/sH1(S,A) = 0, and so, Hl(S, A)G/S ~ H~\G/S, H\S, A)); but

H~\G/S, H\S, A))csL E2U, by the periodicity of the cohomology of finite

cyclic groups [3, Corollary to Proposition 6, p. 141]. From Hx = 0 it also
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follows that E2,x sa £,31'', because E2-° = 0 and hence, E2'° = 0 (periodicity

again). Moreover, E^x = 0, since H2 = 0. Therefore, it has been proved that

H\S, A)g/s = 0. Now, since HX(S, A) is annihilated by a power of p [3,

Corollary 1 to Proposition 4, p. 138], a property of finite /z-groups yields

//'(S, yi) = 0. (This property is well known, at least for modules annihilated

by p [3, Lemma 4, p. 149]; the case of a module M annihilated by a/z-power

reduces to the elementary case, by considering M/pM.) Finally, since

H \S, A) = 0, the spectral sequence provides an exact sequence H2 -> E2'2 -»

E2'°, where the extreme terms vanish. Thus, E2'2 = 0, which implies H2(S, A)

= 0. (This follows from the fact that, if a /»-primary module M over a finite

//•-group K satisfies MK = 0, then M = 0. Since M = \JN, where Af runs

through all finitely generated subgroups of M, MK = U #*, and the result

can be deduced from the finite case [3, Lemma 2, p. 146].)

By dimension shifting and by moving up or down one dimension at a time,

to prove (ii) it is sufficient to show that:

(iii) If H\G, A) = H\G, A) = 0, then H3(G, A) = 0.

(iv) If H\G, A) = H\G, A) - 0, then H\G, A) = 0.
Proceeding by induction on the order of G, given a normal subgroup S of

index p in G, in the case of (iii) it follows that H3(S, A) = 0, because

H\S, A) = H2(S, A) = 0, by (i). Then, E¡'° ~ H3 (at this point, the spectral

sequence is not essential [3, Corollary to Proposition 5 (Proof), p. 126]); but

E2'° = 0, as before, since Hx = 0. Similarly, under the hypothesis of (iv),

assertion (i) gives H2(S, A) = H3(S, A) = 0, and hence, by the inductive

assumption, H\S, A) = 0. Therefore, E23'0 ~ H3 = 0, so that Hx sí E¡-° =

0. Thus, the proof of the theorem is complete.
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