ANALYTICITY OF FUNCTIONS AND SUBALGEBRAS OF L^∞ CONTAINING H^∞

S.-Y. A. CHANG1 AND J. B. GARNETT2

Abstract. Let B be a subalgebra of L^∞ containing H^∞. We give some necessary and sufficient conditions, expressed in terms of analyticity, for a function in L^∞ to belong to B.

1. Let H^∞ be the algebra of bounded analytic functions on the open disc D. By Fatou's theorem H^∞ is a closed subalgebra of L^∞, the algebra of essentially bounded Lebesgue measurable functions on the unit circle C. The (closed) subalgebras of L^∞ containing H^∞ have received considerable attention recently (cf. D. Sarason [7], [8], S.-Y. Chang [3], [4] and D. Marshall [6]). The main result of those papers is that each such algebra B is a Douglas algebra, i.e. B is generated by H^∞ and

$$ \mathfrak{B} = \{ \tilde{b} : b \in H^\infty \text{ is an inner function and } \tilde{b} \in B \}.$$

In this note we characterize the elements of B in terms of their analyticity in two different ways. We identify $f \in L^1$ with its Poisson integral

$$ f(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - \varphi) f(\varphi) \, d\varphi $$

where $P_r(t) = (1 - r^2)/(1 - 2r \cos t + r^2)$ is the Poisson kernel. For $\delta > 0$ we let $G_\delta(f)$ be the region $\{re^{i\theta} : |f(re^{i\theta})| > 1 - \delta\}$. For each arc I on the circle with center e_ω and normalized arc length $|I|$, we let $\mathcal{G}(I)$ be the region $\{re^{i\theta} : |\theta - t| < |I|/2, 1 - |I| < r < 1\}$.

We write $H^\infty(G)$ for the set of bounded analytic functions on a region G.

2. The first characterization connects the algebra B to the algebras $H^\infty(G_\delta(b))$, $0 < \delta < 1$, $b \in \mathfrak{B} = \{ \text{inner: } \tilde{b} \in B \}$.

Lemma 2.1. Let $b(z)$ be an inner function and let $0 < \delta < 1$. Then almost every $e^{i\theta} \in C$ is the vertex of a truncated cone lying in $G_\delta(b)$. Every bounded harmonic function $F(z)$ defined on $G_\delta(b)$ has a nontangential limit $F(e^{i\theta})$ at almost every $e^{i\theta} \in C$.

Proof. At almost every $e^{i\theta}$, $b(z)$ has a unimodular nontangential limit.
Such a point \(e^{i\theta} \) is then the vertex of a truncated cone (of arbitrarily large aperture) inside \(G_b(b) \). For any \(\varepsilon > 0 \) and any \(\alpha > 0 \), a metric density argument \([9, \text{p. 201}]\) shows there is \(h, 0 < h < 1 \), and there is a compact set \(E \subset C \) such that \(|C \setminus E| < \varepsilon \) and such that \(G_b(b) \) contains

\[
\mathcal{R} = \bigcup_{e^{i\theta} \in E} \left\{ z : \frac{|e^{i\theta} - z|}{1 - |z|} < \alpha, 1 - h < |z| < 1 \right\}.
\]

Now the proof commencing on the bottom of p. 202 of [9] shows that every bounded harmonic function on \(\mathcal{R} \) has a non-tangential limit from within \(\mathcal{R} \) at almost every point of \(E \). Since \(\varepsilon \) and \(\alpha \) are arbitrary the lemma is proved.

Because of the lemma we can state the following

Theorem 2.2. Let \(f \in L^\infty \). Then \(f \in B \) if and only if for every \(\varepsilon > 0 \) there is \(b \in \partial \mathbb{D} \) and \(\delta, 0 < \delta < 1 \), and there exists \(F \in H^\infty(G_b(b)) \) with non-tangential limit \(F(e^{i\theta}) \) such that \(\|F(e^{i\theta}) - f(e^{i\theta})\|_\infty < \varepsilon \).

Proof. First suppose \(f \in B \). Then \(f \) can be uniformly approximated by functions of the form \(\bar{b}h \) with \(b \in \partial \mathbb{D} \) and \(h \in H^\infty \). When \(0 < \delta < 1 \), \(F(z) = h(z)/b(z) \) is in \(H^\infty(G_b(b)) \) and \(F \) has non-tangential limit \(h(e^{i\theta})/b(e^{i\theta}) = \bar{b}(e^{i\theta})h(e^{i\theta}) \) almost everywhere. Thus the condition of the theorem is necessary.

The proof of the converse uses the basic construction from the proof of the corona theorem.

Lemma 2.3. Let \(b(z) \) be an inner function and let \(0 < \eta < 1 \). There is a sequence \(\Gamma_i \) of disjoint rectifiable Jordan curves bounding domains \(D_i \subset D \) such that:

\[
\{ |b(z)| < \eta \} \subset \bigcup D_i. \tag{2.1}
\]

\[
\inf_{D_i} |b(z)| < \eta. \tag{2.2}
\]

(2.3) There is \(\delta = \delta(\eta) < 1 \) such that \(\Gamma_i \subset \{ |b(z)| < \delta(\eta) \} \).

(2.4) Arc length in \(\Gamma = D \cap \bigcup \Gamma_i \) is a Carleson measure on \(D \).

See [1], [2] or [10] for detailed proofs of Lemma 2.3.

To conclude the proof of Theorem 1, it suffices to assume that \(f = F \) almost everywhere, where \(F \in H^\infty(G_b(b)) \) for some \(b \in \partial \mathbb{D} \) and some \(\delta, 0 < \delta < 1 \). Using the duality \(L^\infty/H^\infty = (H^0_1)^* \), we have for \(n = 1, 2, \ldots \)

\[
\text{dist}(f, B) < \inf_{h \in H^\infty} \|f - \bar{b}^n h\| = \sup_{g \in H^1} \left| \frac{1}{2\pi i} \int_C F(z)b^n(z)g(z) \, dz \right|.
\]

Take \(\eta > 1 - \delta \) and consider the curves \(\Gamma_i \) given by Lemma 2.2. Let

\[
\Omega_r = \{ |z| < r \} \setminus \bigcup_i \overline{D_i}, \quad r < 1.
\]
By (2.2) the region \(\Omega_r \) has finite connectivity, and since \(b(z) \) is inner, \(\Omega_r \subset G_b(b) \) by (2.1) when \(\eta > 1 - \delta \). Moreover \(\Omega_r \) has rectifiable boundary consisting of
\[
J_r = \{ |z| = r \} \cap \partial \Omega_r
\]
and
\[
K_r = \{ |z| < r \} \cap \bigcup_i \Gamma_i.
\]
By (2.3) for almost every \(e^{i\theta}, re^{i\theta} \in J_r \) when \(1 - r \) is small. Hence by dominated convergence and Lemma 2.1
\[
\lim_{r \to 1} \int_{J_r} F(z)b^n(z)g(z) \, dz = \int_C F(z)b^n(z)g(z) \, dz.
\]
By Cauchy's theorem
\[
\int_{J_r} F(z)b^n(z)g(z) \, dz = -\int_{K_r} F(z)b^n(z)g(z) \, dz
\]
with correct orientations. But by (2.3) and (2.4)
\[
\int_{K_r} |F(z)||b^n(z)||g(z)| \, ds \leq \sup|F(z)|(\delta(\eta))'\|g\|_1,
\]
where \(M \) depends only on \(\Gamma \). Sending \(n \to \infty \) completes the proof.

The theorem or its proof shows that \(\text{dist}(f, B) \) is the infimum of those \(\epsilon > 0 \) for which the condition of the theorem remains true.

3. The second characterization of \(B \) involves the distances from \(f \) to \(H^2 \), measured in the Hilbert spaces \(L^2(P_\sigma(\theta - \theta_0)d\theta) \) for points \(z_0 = r_0e^{i\theta_0} \) lying in some region \(G_b(b), b \in B \).

For \(f \in L^\infty \), let
\[
d\mu_f = |\partial f/\partial \bar{z}|^2(1 - |z|) \, dx \, dy
\]
where \(\partial/\partial \bar{z} = \frac{1}{2}(\partial/\partial x + \partial i/\partial y) \). The Littlewood-Paley identity
\[
\frac{1}{\pi} \int \int |\nabla f(z)|^2 \log \frac{1}{|z|} \, dx \, dy = \frac{1}{2\pi} \int |f - f(0)|^2 \, d\theta,
\]
where \(|\nabla f|^2 = |\partial f/\partial x|^2 + |\partial f/\partial y|^2 \), implies that \(d\mu_f \) is a finite measure on \(D \).

Theorem 3.1. When \(f \in L^\infty \) the following conditions are equivalent.

(i) \(f \in B \).

(ii) For any \(\epsilon > 0 \) there is \(b \in \overline{B} \) and \(\delta, 0 < \delta < 1 \), such that for all \(z_0 \in G_b(b) \),
\[
\inf_{g \in H^2} \frac{1}{2\pi} \int |f - g|^2 P_{r_0}(\theta - \theta_0) \, d\theta < \epsilon. \tag{3.1}
\]

(iii) For any \(\epsilon > 0 \) there is \(b \in \overline{B} \) and \(\delta, 0 < \delta < 1 \), such that
\[
\sup_l \frac{\mu_f(G_b(b) \cap \mathbb{R}(I))}{|I|} < \epsilon. \tag{3.2}
\]
Proof. We show (i) \(\Rightarrow\) (ii) \(\Rightarrow\) (iii) \(\Rightarrow\) (i).

Assume (i) holds. Then there is \(b \in \mathbb{R}\) and \(h \in H^\infty\) such that \(\|f - \bar{b} h\|_\infty < \varepsilon\). For \(z_0 \in G_\delta(b)\), let \(g(z) = \bar{b}(z_0) h(z)\). Then \(g \in H^2\) and
\[
\frac{1}{2\pi} \int |b h - g|^2 P_{\theta_0}(\theta - \theta_0) d\theta < \frac{\|h\|_\infty}{2\pi} \int |b(\theta) - b(z_0)|^2 P_{\theta_0}(\theta - \theta_0) d\theta
\]
\[
= \|h\|_\infty (1 - |b(z_0)|^2) < 2\delta\|h\|_\infty.
\]
Consequently, (3.1) holds if \(\delta\) is sufficiently small.

Now suppose (ii) holds and choose \(b \in \mathbb{R}\) and \(\delta\) so that (3.1) holds. We follow the proof of Lemma 2 of [3]. By Lemma 5 of [3], (3.2) will be proved if we show that
\[
\mu_f(\mathcal{R}(I_0)) < \varepsilon |I_0|
\]
for all arcs \(I_0\) of the form \(|\theta - \theta_0| < 1 - r_0\) where \(z_0 = r_0 e^{i\theta_0} \in G_\delta(b)\). Let \(w = (z - z_0)/(1 - \bar{z}_0 z)\) and let \(F(w) = f(z) - g(z)\), where \(g \in H^2\) is chosen to attain the infimum (3.1). Then \(F(w)\) is conjugate analytic, so that \(\|\nabla F(w)\|^2 = 2|\partial F/\partial \bar{w}|^2\). Since \(F(0) = 0\), the Littlewood-Paley identity gives us
\[
\frac{1}{2\pi} \int_0^{2\pi} |F(e^{i\varphi})|^2 d\varphi = \frac{2}{\pi} \iint \left| \frac{\partial F}{\partial \overline{w}} \right|^2 \log \left| \frac{1}{|w|} \right| du dv
\]
where \(w = u + iv\). A change of variables then yields
\[
\frac{1}{2\pi} \int_0^{2\pi} |f(\theta) - g(\theta)|^2 P_{\theta_0}(\theta - \theta_0) d\theta
\]
\[
= \frac{2}{\pi} \iint \left| \frac{\partial f}{\partial \overline{z}} \right|^2 \log \left| \frac{1 - \overline{z}_0 z}{z - z_0} \right| dx dy,
\]
as \(\partial g/\partial \bar{z} = 0\). When \(z \in \mathcal{R}(I_0)\),
\[
\frac{1 - |z|}{1 - r_0} < c \log \left| \frac{1 - \overline{z}_0 z}{z - z_0} \right|
\]
and hence (3.1) implies that
\[
\mu_f(\mathcal{R}(I_0)) < \frac{c(1 - r_0)}{2\pi} \int |f - g|^2 P_{\theta_0}(\theta - \theta_0) d\theta < c\varepsilon (1 - r_0).
\]

Now assume (iii). Let \(\varepsilon > 0\) and fix \(b \in \mathbb{R}\) and \(\delta, 0 < \delta < 1\), so that (3.2) holds. We estimate
\[
\text{dist}(f, \bar{b}^* H^\infty) = \sup_{g \in H^1} \left\| \frac{1}{2\pi} \int f b^i g d\theta \right\|
\]
as in the proof of Theorem 6 of [3] with one small modification. Note that when \(g \in H^1\),
\[
\nabla f(z) \nabla (b^i g)(z) = f_z(b^i g)_z + f_z(b^i g)_z = 2(\partial f/\partial \bar{z})(\partial (b^i g)/\partial z).
\]
Polarization of the Littlewood-Paley identity then yields
From this point one can repeat the proof of Theorem 6 in [3], using (3.2) instead of the analogous condition on $|\nabla f|^2(1 - |z|) \, dx \, dy$, and obtain

$$\text{dist}(f, \mathcal{B} H^\infty) \leq C e^{1/2}.$$

Thus $f \in B$ if (iii) holds and the theorem is proved.

The proof of the theorem contains the following estimates on $\text{dist}(f, B)$ for $f \in L^\infty$. Let $\epsilon_1(f)$ be the infimum of those $\epsilon > 0$ for which condition (ii) is true and let $\epsilon_2(f)$ be the infimum of those $\epsilon > 0$ for which condition (iii) is true. Then

$$\text{dist}(f, B) > c_1\epsilon_1^{1/2} > c_2\epsilon_2^{1/2} > c_3 \text{dist}(f, B),$$

for universal constants c_1, c_2 and c_3. (These inequalities, reading from the left, follow from the proofs of (i) \Rightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (i) respectively.)

Since $\frac{\partial f}{\partial z} = (\bar{\partial} f \, \bar{\partial} z)$, the description of $B \cap \overline{B}$ given as Theorem 8 in [3] is an immediate corollary of Theorem 3.1.

Corollary 3.2. If $f \in L^\infty$, then $f \in B$ if and only if for any $\epsilon > 0$ there is $b \in \mathcal{B}$ and δ, $0 < \delta < 1$, such that

$$\int \int_{\mathcal{D}(I) \cap G_\delta(b)} |\nabla f|^2(1 - |z|) \, dx \, dy < \epsilon(I)$$

for every arc I.

References

Department of Mathematics, University of Maryland, College Park, Maryland 20742

Department of Mathematics, University of California, Los Angeles, California 90024