Flat semilattices
HTML articles powered by AMS MathViewer
- by Sydney Bulman-Fleming and Kenneth McDowell
- Proc. Amer. Math. Soc. 72 (1978), 228-232
- DOI: https://doi.org/10.1090/S0002-9939-1978-0505915-X
- PDF | Request permission
Abstract:
Let S (respectively ${{\mathbf {S}}_0}$) denote the category of all join-semilattices (resp. join-semilattices with 0) with (0-preserving) semilattice homomorphisms. For $A \in {\mathbf {S}}$ let ${A_0}$ represent the object of ${{\mathbf {S}}_0}$ obtained by adjoining a new 0-element. In either category the tensor product of two objects may be constructed in such a manner that the tensor product functor is left adjoint to the hom functor. An object $A \in {\mathbf {S}}\;({{\mathbf {S}}_0})$ is called flat if the functor - $- { \otimes _{\mathbf {S}}}A( - { \otimes _{{{\mathbf {S}}_0}}}A)$ preserves monomorphisms in S $({{\mathbf {S}}_0})$. THEOREM. For $A \in {\mathbf {S}}\;({{\mathbf {S}}_0})$ the following conditions are equivalent: (1) A is flat in S $({{\mathbf {S}}_0})$, (2) ${A_0}(A)$ is distributive (see Grätzer, Lattice theory, p. 117), (3) A is a directed colimit of a system of f.g. free algebras in S $({{\mathbf {S}}_0})$. The equivalence of (1) and (2) in S was previously known to James A. Anderson. $(1) \Leftrightarrow (3)$ is an analogue of Lazard’s well-known result for R-modules.References
- James A. Anderson, Characterization of flat semilattices (private communication).
- James A. Anderson and Naoki Kimura, The tensor product of semilattices, Semigroup Forum 16 (1978), no. 1, 83–88. MR 497074, DOI 10.1007/BF02194615
- G. Bruns and H. Lakser, Injective hulls of semilattices, Canad. Math. Bull. 13 (1970), 115–118. MR 274372, DOI 10.4153/CMB-1970-023-6
- Sydney Bulman-Fleming and Kenneth McDowell, The category of mono-unary algebras, Algebra Universalis 9 (1979), no. 3, 339–345. MR 544858, DOI 10.1007/BF02488046
- J. E. Delany, The tensor product of semilattices, Portugal. Math. 31 (1972), 193–202. MR 306063
- Grant A. Fraser, The semilattice tensor product of distributive lattices, Trans. Amer. Math. Soc. 217 (1976), 183–194. MR 392728, DOI 10.1090/S0002-9947-1976-0392728-8
- Grant A. Fraser, The tensor product of distributive lattices, Proc. Edinburgh Math. Soc. (2) 20 (1976), no. 2, 121–131. MR 419320, DOI 10.1017/S0013091500010622
- Grant A. Fraser, Tensor products of semilattices and distributive lattices, Semigroup Forum 13 (1976/77), no. 2, 178–184. MR 427177, DOI 10.1007/BF02194933
- Grant A. Fraser, The tensor product of semilattices, Algebra Universalis 8 (1978), no. 1, 1–3. MR 450145, DOI 10.1007/BF02485362
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817
- Pierre-Antoine Grillet, The tensor product of semigroups, Trans. Amer. Math. Soc. 138 (1969), 267–280. MR 237687, DOI 10.1090/S0002-9947-1969-0237687-X
- Pierre-Antoine Grillet, The tensor product of commutative semigroups, Trans. Amer. Math. Soc. 138 (1969), 281–293. MR 237688, DOI 10.1090/S0002-9947-1969-0237688-1
- Pierre-Antoine Grillet, Interpolation properties and tensor product of semigroups, Semigroup Forum 1 (1970), no. 2, 162–168. MR 267022, DOI 10.1007/BF02573029
- Pierre Antoine Grillet, The free envelope of a finitely generated commutative semigroup, Trans. Amer. Math. Soc. 149 (1970), 665–682. MR 292975, DOI 10.1090/S0002-9947-1970-0292975-4
- Pierre Antoine Grillet, Directed colimits of free commutative semigroups, J. Pure Appl. Algebra 9 (1976/77), no. 1, 73–87. MR 422461, DOI 10.1016/0022-4049(76)90007-4
- T. J. Head, Problems and conjectures concerning tensor products of commutative semigroups, J. Nat. Sci. and Math. 8 (1968), 211–215. MR 238979
- Karl Heinrich Hofmann, Michael Mislove, and Albert Stralka, The Pontryagin duality of compact $\textrm {O}$-dimensional semilattices and its applications, Lecture Notes in Mathematics, Vol. 396, Springer-Verlag, Berlin-New York, 1974. MR 0354921
- Alfred Horn and Naoki Kimura, The category of semilattices, Algebra Universalis 1 (1971), no. 1, 26–38. MR 318019, DOI 10.1007/BF02944952 N. Kimura, Tensor products of semilattices, Notices Amer. Math. Soc. 17 (1970), 554.
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100
- Richard T. Shannon, Lazard’s theorem in algebraic categories, Algebra Universalis 4 (1974), 226–228. MR 352207, DOI 10.1007/BF02485728
- Bo Stenström, Flatness and localization over monoids, Math. Nachr. 48 (1971), 315–334. MR 296191, DOI 10.1002/mana.19710480124
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 228-232
- MSC: Primary 06A20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0505915-X
- MathSciNet review: 0505915