Some properties of asymptotic functions and their applications
HTML articles powered by AMS MathViewer
- by Ling Yau Chan
- Proc. Amer. Math. Soc. 72 (1978), 239-247
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507315-5
- PDF | Request permission
Abstract:
In this paper we give complete characterizations, in terms of Dini numbers and integrals, of positive functions $\Phi (u)$ defined in (0, $\infty$) satisfying the conditions: (i) $\Phi (u)/{u^a}$ is nondecreasing and (ii) $\Phi (u)/{u^b}$ is nonincreasing. By applying these results we obtain necessary and sufficient conditions for power series and trigonometric series to satisfy a certain Lipschitz condition, which include some known results of R. P. Boas, Jr. [1]. We also give complete characterizations of positive functions $\Phi (u)$ defined in $( - \infty ,\infty )$ satisfying the conditions: (i) $\Phi (u)/{e^{au}}$ is nondecreasing and (ii) $\Phi (u)/{e^{bu}}$ is nonincreasing.References
- R. P. Boas Jr., Fourier series with positive coefficients, J. Math. Anal. Appl. 17 (1967), 463–483. MR 204954, DOI 10.1016/0022-247X(67)90134-5
- Ralph P. Boas Jr., Integrability theorems for trigonometric transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38, Springer-Verlag New York, Inc., New York, 1967. MR 0219973
- L. Y. Chan, Y. M. Chen, and M. C. Liu, Some properties of asymptotic functions, Studia Math. 67 (1980), no. 1, 65–72. MR 579441, DOI 10.4064/sm-67-1-65-72
- Yung-ming Chen, Theorems of asymptotic approximation, Math. Ann. 140 (1960), 360–407. MR 112931, DOI 10.1007/BF01361220
- Yung-ming Chen, On two-functional spaces, Studia Math. 24 (1964), 61–88. MR 163160, DOI 10.4064/sm-24-1-61-88
- Yung-ming Chen, An oscillation criterion for the second-order nonlinear differential equation $x''+xF(x’{} ^{2},\,x^{2},\,t)=0$, Quart. J. Math. Oxford Ser. (2) 24 (1973), 165–168. MR 330617, DOI 10.1093/qmath/24.1.165
- Prabha Jain, On the integrability of power series, Proc. Amer. Math. Soc. 42 (1974), 569–574. MR 338666, DOI 10.1090/S0002-9939-1974-0338666-1
- Sumiyuki Koizumi, On the singular integrals. I, Proc. Japan Acad. 34 (1958), 193–198. MR 98957 H. P. Mulholland, Concerning the generalization of the Young-Hausdorff theorem, Proc. London Math. Soc. 35 (1933), 257-293.
- József Németh, Generalizations of the Hardy-Littlewood inequality. II, Acta Sci. Math. (Szeged) 35 (1973), 127–134. MR 450478
- Lars-Erik Persson and Ingemar Wik, Integrability conditions on periodic functions related to their Fourier transforms, J. Math. Anal. Appl. 44 (1973), 291–309. MR 333551, DOI 10.1016/0022-247X(73)90061-9
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 239-247
- MSC: Primary 26A16; Secondary 42A16
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507315-5
- MathSciNet review: 507315