Leray-Schauder principles for condensing multivalued mappings in topological linear spaces
HTML articles powered by AMS MathViewer
- by Rainald Schöneberg
- Proc. Amer. Math. Soc. 72 (1978), 268-270
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507320-9
- PDF | Request permission
Abstract:
By establishing the existence of an equivalent fixed point problem it is shown without any recourse to degree theory or to the theory of homotopy-extension-theorems that all fixed point theorems of Leray-Schauder type for condensing (single- or multi-valued) mappings in topological linear spaces can immediately be deduced from the corresponding fixed point theorems of Schauder type.References
- Felix E. Browder, Problèmes nonlinéaires, Séminaire de Mathématiques Supérieures, No. 15 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0250140
- D. E. Edmunds and J. R. L. Webb, A Leray-Schauder theorem for a class of nonlinear operators, Math. Ann. 182 (1969), 207–212. MR 254688, DOI 10.1007/BF01350323
- P. M. Fitzpatrick and W. V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math. 54 (1974), no. 2, 17–23. MR 405179, DOI 10.2140/pjm.1974.54.17
- P. M. Fitzpatrick and W. V. Petryshyn, Fixed point theorems and the fixed point index for multivalued mappings in cones, J. London Math. Soc. (2) 12 (1975/76), no. 1, 75–85. MR 405180, DOI 10.1112/jlms/s2-12.1.75 A. Granas, Colloquium talk, Aachen, 1975 (unpublished). S. Hahn, A remark on a fixed point theorem for condensing set-valued mappings, Technische Universität Dresden, Informationen, July 1977.
- W. V. Petryshyn, Structure of the fixed points sets of $k$-set-contractions, Arch. Rational Mech. Anal. 40 (1970/71), 312–328. MR 273480, DOI 10.1007/BF00252680
- W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1–25. MR 2478129, DOI 10.1090/S0002-9947-1974-2478129-5
- A. J. B. Potter, An elementary version of the Leray-Schauder theorem, J. London Math. Soc. (2) 5 (1972), 414–416. MR 312342, DOI 10.1112/jlms/s2-5.3.414
- J. R. L. Webb, A fixed point theorem and applications to functional equations in Banach spaces, Boll. Un. Mat. Ital. (4) 4 (1971), 775–788 (English, with Italian summary). MR 0377631
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 268-270
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507320-9
- MathSciNet review: 507320