Power bounded strictly cyclic operators
HTML articles powered by AMS MathViewer
- by Erik J. Rosenthal
- Proc. Amer. Math. Soc. 72 (1978), 276-280
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507322-2
- PDF | Request permission
Abstract:
We show that a power bounded hereditarily strictly cyclic operator on Hilbert space is similar to a contraction. We also show that certain “almost unitary” operators are not strictly cyclic.References
- Bruce Barnes, Operators with a strictly cyclic vector, Proc. Amer. Math. Soc. 41 (1973), 480–486. MR 344924, DOI 10.1090/S0002-9939-1973-0344924-6
- Mary R. Embry, Maximal invariant subspaces of strictly cyclic operator algebras, Pacific J. Math. 49 (1973), 45–50. MR 336386
- S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788–790. MR 165362, DOI 10.1090/S0002-9939-1964-0165362-X
- P. Ghatage, Generalized algebraic operators, Proc. Amer. Math. Soc. 52 (1975), 232–236. MR 374961, DOI 10.1090/S0002-9939-1975-0374961-9
- P. R. Halmos, On Foguel’s answer to Nagy’s question, Proc. Amer. Math. Soc. 15 (1964), 791–793. MR 165363, DOI 10.1090/S0002-9939-1964-0165363-1
- James H. Hedlund, Strongly strictly cyclic weighted shifts, Proc. Amer. Math. Soc. 57 (1976), no. 1, 119–121. MR 402530, DOI 10.1090/S0002-9939-1976-0402530-1
- Domingo A. Herrero, Transitive algebras of operators that contain a subalgebra of finite strict multiplicity, Rev. Un. Mat. Argentina 26 (1972/73), 77–84 (Spanish). MR 336387
- Domingo A. Herrero, Operator algebras of finite strict multiplicity, Indiana Univ. Math. J. 22 (1972/73), 13–24. MR 315468, DOI 10.1512/iumj.1972.22.22003
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Edward Kerlin and Alan Lambert, Strictly cyclic shifts on $l_{p}$, Acta Sci. Math. (Szeged) 35 (1973), 87–94. MR 328658 A. L. Lambert, Strictly cyclic operator algebras, Dissertation, Univ. of Michigan, 1970.
- Alan Lambert, Strictly cyclic weighted shifts, Proc. Amer. Math. Soc. 29 (1971), 331–336. MR 275213, DOI 10.1090/S0002-9939-1971-0275213-4
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664
- A. L. Lambert and T. R. Turner, The double commutant of invertibly weighted shifts, Duke Math. J. 39 (1972), 385–389. MR 310683
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Béla Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89–93 (English, with Russian and Hungarian summaries). MR 108722
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 276-280
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507322-2
- MathSciNet review: 507322